

Predicting Software Maintainability Using Fuzzy Logic

Neha Prashar1, Chhavi Rana2

Student1, Assistant Professor2

Department of Computer Science and Engineering,University Institute of Engineering and Technology,Maharshi
Dayanand University, Rohtak, Haryana, India

1iamnehaparashar@gmail.com, 2chhavi1jan@yahoo.com

Abstract- Ascertaining , efforts and budget spent in the
maintainability phase of a software development
Maintainability has always drawn the attention of
researchers. Software Maintainability is the measure of
ease with which a software upgrades, enhances or
debugs itself. The software which adapts itself quicker to
the upgrades or changes is more maintainable compared
to the softwares which takes more time to adapt
themselves. The relation between the amount of time
taken by the developer to change the software and
maintainability is inverse. The time spent and efforts
required for keeping software operational consumes
about 40-70% of cost of the entire life cycle This study
proposes a four parameters that integrated to measure the
software maintainability. This study will evaluate how
to reduce the maintenance cost and the efforts by using
these parameters.

Keywords- Software Maintenance, Fuzzy Logic,
MATLAB etc.

I. INTRODUCTION

 It is certain that software maintenance represents
a lot of the general software spending plan for a data
information association. With the proceeding increment
in software production an ever increasing number of
assets are spent on maintenance. The Maintenance of
existing software can represent 70 percent of all efforts
exhausted by a software association. It is assessed that
numerous organizations will spend near 80 percent of
their software allowance on Maintenance if nothing is
done to enhance the present approach. Maintenance may
traverse for a long time though development might be 1-
2 year. Since 1972, software maintenance was portrayed
as an "iceberg" to feature the substantial mass of
potential issue and costs lie under the surface.
 One of the real difficulties in software
maintenance is to decide the impacts of a proposed
modification on rest of the system. Effect investigation
is the action of surveying the potential impacts of a
change with the point of limiting surprising reactions.

The errand includes surveying the propriety of a
proposed modification and assessing the dangers related
with its execution, including appraisals of the impact on
assets, endeavors and scheduling. It additionally
includes the distinguishing proof of the system's parts
that should be altered as outcomes of the proposed
modification.
 These surveys also account that maintenance
costs are mostly because of modifications, rather than
corrections. A number of technical and managerial
problems add to the maintenance costs of a software.
Some of the most demanding issues of software
maintenance are: course compression, impact analysis,
and testing. Whenever a modification is made to a
portion of software, it is significant that the maintainer
gains a absolute understanding of the organization,
conduct and functionality of the system being adapted. It
is on the basis of this notion that suggestions of
enhancements to achieve the maintenance goals can be
generated. As a result, maintainers expend a huge sum of
their time understanding the code and the associated
documentation to understand its logic, rationale, and
organization. Existing estimates specify that percentage
of time devoted on program maintenance understanding
ranges from 60% to 80%.
One of the foremost challenges in software maintenance
is to resolve the effects of a projected adaptation on the
rest of the system. Impact analysis is the activity of
assessing the possible possessions of a alteration with the
aim of reducing unanticipated side effects. The
undertaking involves assessing the suitability of a
anticipated amendment and evaluating the risks coupled
with its implementation, including estimates of the effect
on resources, efforts and scheduling. It also includes the
acknowledgment of the system’s parts that requires to be
personalized as an outcome of the anticipated adaptation.

Studies propose that the software maintenance
process starts without appropriate learning of the
software system. This happens in light of the fact that the
software maintenance group is ignorant of the
prerequisites and plan documentation. Likewise,

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1271

traditional models neglect to catch the evolutionary idea
of the software. To defeat these issues, software
maintenance models have been proposed

This paper studies the concept of software
maintenance system. Further, in section II, it provides
the related work of various researchers. In Section III, I
vehicle collision avoidance technique is discussed .
Section IV includes.

II. RELATED WORK

 Chandrashekhar Rajaraman et. al. [1] portrayed
a couple of troubles that an individual experiences while
testing C++ programs, which may realize program
flimsiness. Legacy and polymorphism are the key idea in
question situated programming (OOP), and are principal
for accomplishing reusability and extendibility, yet they
in like manner make programs more hard to get it. We
have tried to show up by conflicts and by some exact
confirmation that for the most part used many-sided
quality measurements like line of code, cyclomatic
intricacy, and and those written in other protest arranged
vernaculars, since they don't address ideas like legacy
and epitome, beside having distinctive weakness. A
couple of measures using a thought from the universe of
utilitarian deterioration – coupling, are described for
C++ programs..

K.K. Aggarwal et. al. [2] depicts that Software upkeep is
a task that every progression total needs to stand up to
when the product is passed on to the clients’ place,
introduced and is equipped. The time spent and exertion
required for keeping programming operational uses
around 60% of cost of entire life cycle. This examination
proposes a four parameter joined assessment of
programming viability with the help of a fluffy model..

Alian April et. Al [3] manages the assessment and
change of one's product upkeep venture by proposing
moves up to the product support standards and displayed
a prescribed development outline for day by day
programming upkeep works out: Software Maintenance
Maturity Model (SMMM). The product upkeep act
encounters a shortage of administration structures to help
its evaluation , control, and ceaseless change. The
SMMM has a tendency to fortify the previously
mentioned plan. The SMM relies upon professionals.

Alain April et. a.[4] adapt to the evaluation and
improvement of the product support work by proposing
changes to the product upkeep guidelines and presenting
an arranged development display for everyday
programming upkeep exercises :Software Maintenance

Maturity Model. The Software upkeep work acquire
with a lack of administration models to advance its
assessment, task, and ceaseless change. The SMMM
manages the interesting programming upkeep while
safeguarding a structure much the same as that of the
CMM development display. The SMMM rotates around
the experts, Experience, Universal guidelines and the
powerful writing on programming support. He
recommended the model's objectives, domain,
organization took after by its central approval.

Shyam R. Chidamber and Chris F. Kemerer [5] huge
module obviously improvement is the ability to evaluate
the procedure. They given the imperative undertaking
that product advancement plays in the deliverance and
pertinence of data innovation, directors are steadily all
the more concentrating on strategy upgrade in the
product improvement region. This accentuation has had
two sound impacts. The essential is that this request has
impelled the terms of an amount of creative or
potentially better ways to deal with programming
improvement, with conceivably the most vital being
object-introduction (OO). Following, the edge on
strategy improvement has opened up the interest for
programming strategies, or measurements with which to
administer the system. The need for such measurements
is principally sharp when a foundation is embracing an
inventive innovation for which understood practices
presently can't seem to be created.

Jane Huffman Hayes et. al. [6] deduced an Adaptive
Maintenance Effort Model (AMEffMo). Some
measurements, were changed and changes were
observed to be unequivocally related to support exertion.
The relapse models performed sound in foreseeing
versatile upkeep exertion and in addition conceivable
helpful data for administrators and maintainers.

Jane Huffman Hayes et. Al [7] show the watch mine-
embrace (OMA) perspective that helps relationship in
rolling out improvements to their product advancements
shapes without concentrating on and undertaking far
reaching scale clearing various leveled process change.
Astoundingly, the approach has been associated with
improve programming practices focused on viability.
This novel approach depends on the theory that product
groups typically specify target actualities about things
that do or don't work dmirably. Groups by then mine
their old rarities and their recollections of events to find
the product items, structures, measurements, et cetera
that incited the observation. By virtue of programming
viability, it is then vital to play out some estimation to
ensure that the technique result in upgraded practicality.
We introduce two viability measures, practicality item

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1272

and saw practicality, to address this need. Other
practicality measures that may be used as a piece of the
mine movement in like manner inspected.

Rikard Land [8] depicted the examination we have as of
late begun. We will investigate how the "Viability" of a
touch of programming changes as time goes on and it is
being kept up by performing estimations on current
systems. We show the possibility of "viability", our
hypotheses, and our approach.

Warren Harrison et. al. [9] creates most recent portrayal
of programming upkeep in light of a target determination
run which choose whether a given programming unit can
be effectively altered, or on the off chance that it ought
to rather be reworked. The paper recommends early
location of progress inclined modules using change
measures crosswise over release cycles can be useful
method in capably distribution of support assets.

Scott L. Schneberger and Ephraim R. [10] depicts the
biggest single life cycle PC framework cost has been for
keeping up data framework programming. All the more
starting late, the figuring scene has begun to encounter a
basic change from joined PC outlines to non-thought or
circled PC models. This paper discusses another locale
of research on programming support, focusing on the
issue of whether and to what degree the rising
advancement of flowed PC working circumstances
particularly impacts programming upkeep. In light of
trade journal articles, the issue appears to depend upon
two diametrics of data framework plans: part
straightforwardness and framework many-sided quality.

III. FUZZY SYSTEM MODEL

The Fuzzy Logic instrument was presented in
1965, likewise by Lotfi Zadeh, and is a scientific
apparatus for managing vulnerability. It proposes
delicate figuring association the vital idea of processing
with writing. It furnishes a procedure to manage
imprecision and data granularity. The fluffy hypothesis
gives an instrument to speaking to etymological
develops, for example, "some," "low," "medium,"
"regularly," "few" as appeared in fig 2.

Fig 1: A Simple Fuzzy Logic System [18]

The human cerebrum translates loose and
inadequate tactile data gave by discerning organs. Fluffy
set hypothesis furnishes a deliberate analytics to manage
such data semantically, and numerical calculations are
performed by it by utilizing etymological marks
predetermined by participation capacities. The Fluffy
surmising framework (FIS) when chosen legitimately
can adequately display human ability in a particular
application. An exemplary set is a fresh defined with a
fresh limit. Compared to the traditional set, a fluffy set,
is a defined without a new limit. That is, the progress
from "has a place with a set" to "does not have a place
with a set" is slow, and this smooth change is described
by participation works that give fluffy sets adaptability
in demonstrating usually utilized phonetic articulations,
for example, "the water is hot" or "the temperature is
high". The fluffiness does not originate from the
irregularity of the constituent individuals from the set,
however from the vulnerabilities and loose nature of
conceptual musings and ideas. The development of a
fluffy set relies upon two things: the distinguishing proof
of a reasonable universe of talk and the determination of
a suitable enrolment work. In this way, the subjectivity
and non-arbitrariness of fluffy sets is the essential
contrast between the investigation of fluffy sets and
Probability Theory. Fig 3 signifies the participation work
for left and right hindrance separate. It helps the vehicle
for keeping impact from sides of divider or street.

Fig 2: Membership Function of Cyclomatic Complexity

In fluffy framework, the fuzzifier performs
estimations of the information factors (input signals,
genuine factors), scale mapping and fuzzification
(change 1). Hence all the observed signs are scaled, and
fuzzification implies that the deliberate signs (fresh
information amounts which have numerical qualities)
are changed into fluffy amounts. This change is
performed utilizing enrollment capacities. In a
customary fluffy rationale controller, the quantity of
enrollment capacities and the states of these are at first
dictated by the client. A participation work has an
incentive in the vicinity of 0 and 1, and it shows the level

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1273

of belongingness of an amount to a fluffy set. The
participation work for speed is appeared in fig 3.

Fig 3: Membership Function for Live Variable

After the phonetic factors and qualities are
characterized, the tenets of the fluffy induction
framework can be defined. These guidelines delineate
fluffy contributions to fluffy yields. This mapping
happens through compositional run of induction which
depends on Zadeh's expansion of modus ponens which
is simply the recognizable if-then restrictive shape. A
fluffy if-then administer (otherwise called fluffy run)
expect the shape.

If x is A then y is B.
The enrollment capacities can take numerous

structures including triangular, Gaussian, ringer formed,
trapezoidal, and so on. The learning base comprises of
the information base and the etymological control
manage base. The information base gives the data which
is utilized to characterize the phonetic control rules and
the fluffy information control in the fluffy rationale
controller. The govern base characterizes (master rules)
indicates the control objective activities by methods for
an arrangement of semantic standards. At the end of the
day, the run base contains guidelines, for example,
would be given by a specialist.

Table 1: IF-THEN Rules for Linguistic Variables

IF THEN
L_Distance is Far and

R_Dist is Far
R_Vel is high, L_Vel

is high
L_Distance is Near
and R_Dist is Near

R_Vel is Slow, L_Vel
is high

L_Distance is Near
and R_Dist is Medium

R_Vel is Slow, L_Vel
is Slw

L_Distance is Near
and R_Dist is Far

R_Vel is Slow, L_Vel
is Slow

IV. PROPOSED IMPLEMENTATION &

RESULTS OF SYSTEM

 Programming support is an errand that each
improvement assemble needs to confront when the
product is conveyed to the client's site, introduced and is
operational. We presented an incorporated approach for
programming in view of four parameters- Comment
Ratio, Average Live Variable, Average Life Variable
Span, Average Cyclomatic Complexity utilizing fluffy
rationale. Customary measurements like line of code and
so forth are not suitable to quantify the intricacy of the
product. In this way, we consolidated the customary and
more up to date procedures and inferred four elements.
All these four parameters are connected to the fluffy
model. After the handling of these parameters the yield
that will come is practicality.

Maintainability Assessment Metrics
1. Average Number of Live Variable
The normal number of live factors (LV) is the total of the
tally of Live Variables isolated by the check of
executable articulations (n) LV
= LV/n
Where n is an executable statement.
The more, the normal number of live factors, the more
troublesome it is create and to keep up a product.
2. Average Life Variable Span
Normal life variable traverse: The traverse can be
defined as the number of explanations between two
progressive references of the same factor. The normal
traverse estimate (LS) for a program can be finished
utilizing the condition.
 LS program = LS/n
Where n is an executable statement.
3. Comment Ratio
Comment ratio can be defined as
 CR = (s+c)/c
Where s =lines of code and c = number of remark lines.
The lesser the proportion, the superior is the
intelligibility. Remarks give better meaningfulness and
in this manner the Comments Ratio is a vital factor that
influences practicality.
4. Average Cyclomatic Complexity
Cyclomatic Complexity has been defined by Maccabe as
 V = e – n + 2p
Where e = the number of edges in a stream chart,
n = number of hubs and p = quantity of associated parts.

Fuzzification
The preliminary step is to take the sources of information
and settle on how much they have a place with every one
of the proper fluffy sets through enrollment's capacities.
Our examination in view of eighty standards, and every

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1274

one of the principles relies upon settling the
contributions to various diverse fluffy etymological sets:
If Comment Ratio is low and Average Cyclomatic
Complexity is low and Live Variable is low and Life
Span is low then viability is great et cetera. Prior to the
guidelines can be assessed, the sources of info must be
fuzzified as indicated by every one of these phonetic sets.

Figure 4: Fuzzification of Average life Span

Figure 5: Fuzzification of Comment Ratio

Defuzzification
The contribution for the defuzzification procedure is a
set and yield is a solitary number. As much as fluffiness
helps the administer assessment amid the middle of the
road steps, the last wanted yield for every factor is for
the most part a solitary number. Be that as it may, the
total of a fluffy set envelops a scope of yield esteems,
thus should be defuzzified keeping in mind the end goal
to determine a solitary yield an incentive from the set.
Maybe the most prevalent defuzzification technique is
the centroid figuring, which restores the focal point of
region under the bend. There are five worked in
techniques upheld: centroid, bisector, center of most
extreme, biggest of greatest, and littlest of most extreme.

It is by and large observed that practicality particularly
relies upon the sort of information. We have
endeavoured to gauge the practicality of programming..
These measurements may not be suitable to gauge the
support cost and the endeavours that are utilized to look
after programming. In these we have considered the five
programming ventures of undergrad building
understudies. After thought about the ventures, apply the
diverse properties on these tasks, distinctive qualities
will be originated from the distinctive activities of all the
four parameters. The information is the estimation of the
four parameters and the preparing or calculation happens
in the fluffy surmising framework and the yield will be
the viability. The execution has been done in MATLAB.
Keeping in mind the end goal to approve the model, we
have considered five programming activities of
undergrad designing understudies. They were picked just
when appropriate arrangement of info Variables were
accessible. The viability was additionally figured
utilizing the proposed fluffy model. The outcomes are
appeared in Table 1

Table 1: Value of Maintainability

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1275

ssc
Textbox

Fig 6: Results for Live Variable

Fig 7: Results for Live Span

VI. CONCLUSIONS

 It is usually seen that maintainability depends on
the type of Programs. We have attempted to appear by
contentions and by some observational examination that
broadly utilized conventional measurements may not be
fitting to quantify the many-sided quality of the product.
This investigation proposes a four parameters that
incorporated to quantify the product viability. This
examination will assess how to lessen the support cost
and the endeavors by utilizing these parameters. Along
these lines, we have created fluffy based model for
estimating the product practicality. We are about on four
elements like Average live Span, Comment Ratio, and
Average Cyclomatic Complexity to gauge the viability.
We understood that these components will give more
exact perspective of viability for programming. Viability
can be assessed with the assistance of fluffy model and
the outcomes demonstrate that the coordinated
estimation of the practicality gives the preferable
outcomes over any individual information metric is
additionally checked with the assistance of observational
outcomes.
 Future work that can be done in this field to
improve the accuracy of measurement, so as such system
can be developed.

REFERENCES

[1]. Rikard Land Mälardalen “Software

Deterioration And Maintainability – A Model
Proposal” in 1995 University Department of
Computer Engineer

[2]. Khairuddin Hashim and Elizabeth Key “ A
Software Maintainability Attributes Model”
Malaysian Journal of Computer Science

[3]. C. van Koten 1 and A.R. Gray ‘An application
of Bayesian network for predicting object-
oriented software maintainability’ in 2005
Department of Information Science, University
of Otago, P.O.Box 56, Dunedin, New Zealand

[4]. K.K. Aggarwal et. al. ‘Measurement of Software
Maintainability Using a Fuzzy Model’ Journal
of Computer Sciences 1(4):538-542, 2005

[5]. P. K. Suri1, Bharat Bhushan2 “Simulator for
Software Maintainability” Kurukshetra
University, Kurukshetra (Haryana) India
IJCSNS International Journal of Computer
Science and Network Security, VOL.7 No.11,
November 2007

[6]. Markus Pizka and Florian Deißenböck ‘ How to
effectively define and measure maintainability’
in 2007

[7]. Mehwish Riaz, Emilia Mendes, Ewan Tempero
‘A Systematic Review of Software
Maintainability Prediction and Metrics, New

0

2

4

6

8

1 2 3 4 5

LV

Series

Live Variable

Live…

0

1

2

3

1 2 3 4 5

LS

Series

Live Span

Live…

P.No LV LS CR Cyclomat

ic

Complexi

ty

Maint

ainabi

lity

1 6.5 2.5 45 3.7 9.999

5

2 5 0.3 47 3.2 8.001

3 4.8 0.1 9.8 2.4 6.024

5

4 5.1 0.01 42 2.2 8.105

5 5.5 0.4 44.5 3.1 9.345

6

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1276

ssc
Textbox
Table 1: Value of Maintainability

ssc
Textbox
VI. CONCLUSIONS

ssc
Textbox

Zealand in 2009 978-1-4244-4841-8/09/$25.00
©2009 IEEE

[8]. Priyanka Dhankhar1, Harish Mittal2
‘SOFTWARE MAINTAINABILITY IN
OBJECT ORIENTED SOFTWARE’ in 2010
proc.conference 8th may 2010.

[9]. Chikako van Koten Andrew Gray An
Application of Bayesian Network for Predicting
Object-Oriented Software Maintainability in
March 2005 ISSN 1172-6024

[10]. Berns, G., 1984 “Assessing Software
Maintainability .”Communications of the ACM,
27: 14-23.

[11]. Baker, A.L.et.al. and R.W.Witty, "A Philosophy
for Software Measurement," Journal of
Systems and Software, 12, 277-281 (2000).

[12]. Wilde, N. and Ross Huitt: "Maintenance
Support for Object- Oriented Programs,"
Proceedings of IEEE Conference on Software
Maintenance Wilde, N. and Ross Huitt:
"Maintenance Support for Object- Oriented
Programs," Proceedings of IEEE Conference on
Software Maintenance

[13]. Booch, G., "Object Oriented Development,"
IEEE Transactions on Software Engineering,
SE-12, 211-221, 1986.

[14]. Halstead,Maurice H. “Elements of Software
Science” Elsevier north Holland,New
York,1997.

[15]. R. K. Bandi et. al. “Predicting Maintenance
Performance Using Object-Oriented Design
Complexity Metrics”, IEEE T Software Eng, 29,
1, Jan. 2003, pp. 77 – 87.

[16]. Muthanna, S., K. Kontogiannis and B. Stacey,
2000. ‘A maintainability model for industrial
software systems using design level metrics.’
Proc. Seventh Working Conf.

[17]. Land R.,:Measurement of Software
Maintainability”, In Proceedings of Artes
Graduate Student Conference, ARTES, 2002

[18]. Chandershekhar Rajaraman Michael R. Lyu
“Reliability and Maintainability related software
metrics in C++” 2003.

[19]. Alain April1 et. al. “Software Maintainence
Maturity Model: The software maintainence
process model” 2004

[20]. McCabe Thomas j. “A Complexity Measure”,
IEEE Transaction Software Engineering,Vol2,
December 1976.

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:1277

