

FPGA Implementation of 64/128/256 Point Radix-8
Pipelined FFT/IFFT Core

M.S.Naidu1, Dr.B.Sridhar2 and V.Nanchariah3

1M.Tech student, Dept of ECE,LIET,Vizianagaram
2 Professor,Dept of ECE,LIET,Vizianagaram

3 Associate Professor, Dept of ECE,LIET,Vizianagaram
1 naidu2010in@gmail.com, 2srib105@gmail.com, 3 nanch84@gmail.com

Abstract

Orthogonal frequency-division multiplexing (OFDM) is one of the techniques for parallel
transmission, which has received great attention in high-speed data communication systems. It
has been selected for several communication standards such as Ultra-wideband, Long Term
Evolution and Digital Video Broadcasting – Terrestrial. The most important operations in the
OFDM are the FFT operations. Discrete Fourier Transform (DFT) is a fundamental digital
signal processing algorithm used in many applications, including frequency analysis and
frequency domain processing. DFT is the decomposition of a sampled signal in terms of
sinusoidal (complex exponential)components. The symmetry and periodicity properties of the
DFT are exploited to significantly lower its computational requirements. The resulting
algorithms are known as Fast Fourier Transforms (FFTs). A 64-point DFT computes a sequence
x(n) of 64 complex valued numbers given another sequence of data X(k) of length 64 .The basis
of the FFT is that a DFT can be divided into smaller DFTs. In the processor. USFFT64 a radix-8
FFT algorithm is used. It divides DFT into two smaller DFTs of the
length 8. In this paper, we proposed radix-8 highly pipelined FFT architecture for 64-point, 128-
point and 256-point. The proposed FFT is implemented in Xilinx ISE 14.7 using Verilog coding
on FPGA device XC4SX25-12. The simulation results are achieved in terms of device
utilization and RTL schematic, Power Analysis for 64-point, 128-point and 256-point FFTs.

Keywords: VLSI signal Processing, FFT algrotihm, FGGA architecture, OFDM, power
analysis

1. Introduction

Congratulations! Your paper has been accepted for journal publication. Please follow
the steps outlined below when submitting your final draft to the IJAMTES Press. These
guidelines include complete descriptions of the fonts, spacing, and related information for
producing your proceedings manuscripts. Please follow them and if you have any
questions, direct them to the production editor in charge of your journal at the IJAMTES.
Fourier transform is a mathematical Tool which is analyze the circuit and frequency
synthesis for various systems in electronics and communications system such as
filter design in signal processing image processing, stochastic signal model for
various type physical singles measurements[1]. Similarly other areas for real world
applications those are in biomedical engineering, seismic transducers in Earth
Sciences, antennas in electromagnetic, and microphones in communication
engineering, etc. Observing the signals in time domain is very difficult later Baron
Jean Baptiste Fourier, more than a century ago, showed that any waveform that
exists in the real world can be represented (i.e., generated) by adding up sine waves.
In order to desire a high speed data transfer system which would satisfy the several
standards is received great attention selected for several communication standards
such as Ultra-wideband, Long Term Evolution and Digital Video Broadcasting, a
Orthogonal frequency-division multiplexing (OFDM) is used[2,3]. FFT module is a

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:109

part of the OFDM which compute the Discrete fourier transform. The FFT is
implement on dsp system by radix-n, where n is the smallest computation value of
sequence. Simple form is Radix-2 based FFT processors, however now days a most
complex value radix-4 algorithm, but requires a 4-point butterfly unit with higher
complexity, radix-22, radix-23, radix- 24 and radix-2k FFT algorithms based FFT
processors are being developed. FFT architectures are chosen which offers a high
throughput rate with low hardware complexity and low power consumptions. The
proposed radix-8 highly pipelined FFT architecture for 64-point, 128-point and 256-
point. The proposed FFT is implemented in Xilinx ISE 14.7 using Verilog coding on
FPGA device XC4SX25-12. The results are obtain in terms of device utilization and
RTL schematic, Power Analysis for 64-point, 128-point and 256-point FFTs[4].

2. FFT ALGORITHMS
The radix-n (FFTs) are the simplest FFT algorithms used to compute DFT of

various types of signals with low cost of computation. Simplest is radix‐2. It

Computation made up of radix‐2 butterflies. In Radix-2 two types of methods are
generally implemented. There are Decimation in time(DIT),Decimation in
frequency(DIF).[5]

The radix-2 FFT algorithms are used for data vectors of lengths N = 2K. They
proceed by dividing the DFT into two DFTs of length N=2 each, and iterating. Radix-2
small DFT is called basic butterfly in the diagram, which have two inputs, output is
sum of the two inputs and subtraction of two inputs.
DECIMATION ON FREQUENCY (DIF)

The radix-2 algorithms are the simplest FFT algorithms. The decimation-in-
frequency (DIF) radix-2 FFT shown in fig:1 that partitions the DFT computation into
even-indexed and odd-indexed outputs, which can each be computed by shorter-length
DFTs of different

 Fig:1:DIF FFT decimation in stage 1

Combinations of input samples. Recursive application of this decomposition to

the shorter-length DFTs results in the full radix-2 decimation-in-frequency FFT.

In general Complex multiplication of DFT is: N2 Complex multiplication of FFT is
(N/2)log2(N) .
The basis of the FFT is that a DFT can be divided into smaller DFTs. In the processor
USFFT64 a radix-8 FFT algorithm is used. It divides DFT into two smaller DFTs of

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:110

the
length 8, as it is shown in the formula:

 (1)

 Which shows that 64-point DFT is divided into two smaller 8-point DFTs?
The input complex data x(n) are represented by the 2-dimensional array of data
x(8l+m). The columns of this array are computed by 8-point DFTs. The results of them
are multiplied by the twiddle factors W64

ms. And the resulting array of data X(8r+s) is
derived by 8-point DFTs of rows of the intermediate result array. The 8-point DFT,
named as the base FFT operation, is implemented by the Wino grad FFT algorithm,
which provides the minimum additions and multiplications (only 2 complex
multiplications to the factor W8

1). As a result, the radix-8 FFT algorithm needs only
64complex multiplications to the twiddle factors W64

msand 32 multiplications to the
twiddle factor W8

1except of 4096 complex multiplications in the origin DFT. Note that
the well-known radix-2 64-point FFT algorithm needs 192 complex multiplications[6].

3. Radix- 8 development architecture
Each base FFT operation is computed by the procedure unit, referred to
as FFT8, that is that the information path for FFT calculations.FFT8 calculates the 8-
point DFT in the high pipelined mode.
Therefore, in every clock cycle one imaginary number is scan from the computer
file buffer RAM and also the complicated result's written within the output buffer
RAM. The 8-point DFT algorithm is divided into several stages which are
implemented in the stages of the FFT8 pipeline. This supports the increasing the
clock frequency up to 250 rate and better. The latent delay of the FFT8 unit from
input the primary information to output the primary result's up to fourteen clock
cycles[7].

High precision computations
In the core the inner information bit dimension is higher to four digits than the input
file bit dimension.
The main error source is the result truncation after multiplication to the factorsW64 ms
as a result of the foremost of base FFT operation calculations are additions, they are
calculated without errors. The FFT results have the information bit dimension that is
higher in 3digits than the input file bit dimension, which provides the high data range
of results when the input data is the sinusoidal signal. The maximum result error is a
smaller amount than the one least vital little bit of the input file .Besides, the
normalizing shifters are attached to the outputs of FFT8 pipelines, which provide the
proper bandwidth of the resulting data.The overflow detector outputs give the chance
to input the right shift left bit range for these shifters[8].
Low hardware volume
The USFFT64 processor has the minimum multiplier factor variety that is capable four
DSP units..
This truth makes this core enticing to implement in ASIC. When configuring in Xilinx
FPGA, these multipliers are enforced in four DSP48 units severally. The user will
choose the computer file, output knowledge, and constant widths which give
application dynamic vary wants. This can minimize each logic hardware and memory
volume.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:111

Block Diagram
The basic block diagram of the USFFT64 core [9]with two data buffers is shown in
the fig..

Fig 2:Block diagram of 64-point Radix-8 FFT implementation

Sorting
Sorting is ordering a list of objects. We can distinguish two types of sorting. If the
number of objects is small enough to fits into the main memory, sorting is called internal
sorting. If the number of objects is so large that some of them reside on external storage
during the sort, it is called external sorting.
FIFO (First In First Out)
A FIFO is a special type of buffer. The name initial out FIFO inventory accounting stands
for initial in initial out and implies that the info written into the buffer initial comes out of
it first.
There are different kinds of buffers just like the {lifo|last in initial out|LIFO|inventory
accounting} (last in first out), often called a stack memory, and the shared memory. The
choice of buffer design depends on the appliance to be solved .FIFOs can be implemented
with software or hardware.
The choice between package and a hardware answer depends on the appliance and also
the options desired.
When requirements change, a software FIFO easily can be adapted to them by modifying
its program, while a hardware FIFO ,the advantage of the hardware FIFOs shows in their
speed. Every memory within which the info word that's written in initial conjointly comes
out initial once the memory is scan may be a first-in first-out memory.
Exclusive Read/Write FIFOs
In exclusive read/write FIFOs, the writing of information isn't freelance of browse
clock.
There are temporal arrangement relationships between the write clock and therefore
the browse clock.
For instance, overlapping of the read and the write clocks could be prohibited. To
permit use of such FIFOs between 2 systems that employ asynchronously to
1 another, an external circuit is required for synchronization. But this synchronization
circuit usually considerably reduces the datarate.
Concurrent Read/Write FIFOs
In synchronic read/write FIFOs, there is no dependence between the writing and
reading of data. Simultaneous writing and reading are potential in overlapping fashion
or in turn. This means that 2 systems with completely different frequencies will
be connected to the FIFO. The designer needn't worry regarding synchronizing the
2 systems as a result of this can be taken care of within the FIFO[10]. Concurrent
read/write FIFOs, depending on the control signals for writing and reading, fall into
two groups:

•SynchronousFIFOs

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:112

•AsynchronousFIFOs
Synchronous FIFOs
Synchronous FIFOs are management lead supported strategies of control evidenced in
processor systems.
Every digital processor system works synchronal with a system- wide clock signal.
This system temporal arrangement continues to run notwithstanding and
actions are being dead. Enable signals, also often called chip-select signals, start the
synchronous execution of write and read operations in the various devices, such as
memories and ports.The block diagram shows all the signal lines of a synchronous
FIFO. It needs a free-running clock from the writing and another from the reading
system. Writing is controlled by the

Fig3 . Synchronous FIFO

WRITE modify input synchronous with WRITE CLOCK. The
FULL standing line will be synchronal entirely with WRITE CLOCK by the free-
running clock.
In an identical manner, data words are read out by a low level on the READ ENABLE
input synchronous with READ CLOCK.
Here, too, the free-running clock permits one hundred pc synchronization of the
EMPTY signal with browse CLOCK.

Asynchronous FIFOs:

The control signals of an asynchronous FIFO correspond most closely to
human intuition and were, in the past, the only kind of FIFO driving. The block
diagram in Figure 3.8 shows the control lines of an asynchronous FIFO, and illustrates
the typical timing on these lines in a read and writes operation.

Fig 4: Asynchronous FIFO

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:113

FIFO Push/Pop Operations
The Queue block stores a sequence of input samples during a
first in, first out (FIFO) register.
The register capability is about by the Register size parameter, and inputs are
often scalars, vectors, or matrices.
The block pushes the input at the In port on to the end of the queue when a trigger
event is received at the Push port. When a trigger event is received at the Pop port, the
block pops the first element off the queue and holds the Output port at that value. The
first input to be pushed onto the queue is always the first to be popped off. A trigger
event at the optional RST port empties the queue contents.
When select Clear output port on reset, then a trigger event at the RST port empties
the queue and sets the value at the Out port to zero. This setting also applies when a
disabled subsystem containing the Queue block is re enabled; the Out-port value is
only reset to zero in this case when select Clear output port 2048 as an example and
explain the input scheduling as follows. Initially the 12 memory banks are logically
grouped into four sets and , Each set is in charge of one input stream. From the first
to the 3N/4th cycle, the memory banks keep the first to3N/4th samples of each input
stream. For the case of N=2048, the memory banks and d3">store the samples 1th–
512th, 513th–1024th, 1025th–1536th} of the first, the second, the third, and the fourth
input streams, respectively.
From the (3N/4+1)th to the Nth cycle the radix-4 butterfly processes the read- out data
from the memory set and then this memory set are updated with the incoming samples
from stream B,C, and D. That is, together with the previously stored first to 3N/4th
samples, now the radix-4 butterfly can process the samples of stream A, because the
(3N/4 + 1)th to the Nth samples square measure prepared at this moment, also, since
only one butterfly is used at each stage, the (3N/4 + 1)th to the Nth samples for input
streams B, C,and D are stored in the vacated memories a1, a2, and a3, respectively.
Continuing with the instance of N = 2048, at the end of the 2048th clock cycle, the
radix-4 butterfly has computed the 2048 samples of stream A, and the memory set is
updated with the 1537th to the 2048th samples of stream B,C, and D respectively.

4. Implementation FFT on FPGA board
4.1 Simulation tools
behavioral Simulation Using ISE Simulator

Since we need to test set of top modules in your task, we can perform
behavioral recreation on the configuration utilizing the ISE Test system. ISE has full
reconciliation with the ISE Test system. ISE empowers ISE Test system to make the
work registry, aggregate the source records, stack the configuration, and perform
reproduction focused around recreation properties[9].
To choose ISE Test system as project test system:

 Right click the tab of source in device(xc3s700A-4fg484).
 After selecting properties, ISE simulator needs to be selected in the field.

Locating the Simulation Processes:
To run the simulation process, enable ISE simulator design simulation

processes. For locating process of ISE simulator:
 Select Behavioral Simulation in the Sources tab for field.
 Create test bench file.
The tracing simulation processes are available
(i) Syntax Checking: This procedure weighs for linguistic structure flaws in the

test.
(ii) Behavioral Model: simulation of design process starts at this stage.
(iii) Self-checking HDL test bench: Enables to obtain a self-checking HDL test

bench similar to a test bench waveform (TBW) folder and include the test bench to the
project. We can also utilize this process to update a previous self-checking test. The

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:114

test bench obtained by this method contains output data and self-checking data that can
be used to evaluate the data from afterwards simulation runs.
Specifying Simulation Properties
For performing a behavioral recreation on the stopwatch plan after you set a few

procedure properties for reproduction. ISE permits you to set a few ISE Test system
properties notwithstanding the recreation net rundown properties. To see the
behavioral re-enactment properties, and to adjust the properties for this exercise. In the
Sources tab, select the test bench file.

 For expanding ISE simulator press + for hierarchy

 Press Right-button for Simulate Behavioral Model process.

 After Properties being selected, set display level to advanced.

 This global setting enables us to see all available
properties.

 Click Apply and click OK

5. Results
The proposed radix-8 FFT/IFFT is implemented for 64/128/256 point on XC4VSX25-12 FPGA
Device in Xilinx ISE 14.7.
The device utilization report for 64-point FFT is shown in Fig.4 and RTL schematic as shown in
table:1

RTL schematic of 64-point is shown in Fig.4

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:115

Fig.5 RTL schematic

Power Analysis report of 64-point FFT is shown in Table:2.

The device utilization report for 128-point FFT is shown in Table:3.

RTL schematic of 128-point is shown in Fig.6

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:116

Fig:6 RTL schematic 128

Power Analysis report of 128-point FFT is shown in Table:4.

The device utilization report for 256-point FFT is shown in Table:5.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:117

RTL schematic of 256-point is shown in Fig 7.

Fig:7

Power Analysis report of 256-point FFT is shown in table 6.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:118

5.Conclusions

In this paper, we proposed highly pipelined architecture for 64/128/256-point Fast Fourier
Transform. The proposed architecture is implemented using Verilog coding on Xilinx
environment. The proposed radix-8 FFT reduces arithmetic computations required to
compute FFT comparing with the radix-2, radix-4 based FFT architectures. The proposed
FFT is prototyped on FPGA device XC4SX25-12. The proposed FFT is designed at
different clock frequencies with different data widths like 10-bit and 16-bit. The
simulation results and power estimation results are shown in results chapter for different
64-point, 128-point and 256-point FFTs.

References
1. S. He, M. Torkelson, Designing pipeline FFT processor for OFDM (de) modulation, in: 1998

URSI International Symposium on Signals, Systems, and Electronics, Pisa, 1998. ISSSE 98,
IEEE, 1998, pp.257–262.

2. C.-T.Lin,Y.-C.Yu,L.-D.Van,Alow-power64-pointFFT/IFFTdesignforIEEE 802.11 a WLAN
application, in: 2006 IEEE International Symposium on Circuits and Systems, Island of Kos,
IEEE, 2006, pp. 4.

3. S.-I. Cho, K.-M. Kang, A low-complexity 128-point mixed-radix FFT processor for MB-OFDM
UWB systems, ETRI J. 32 (1) (2010)1–10.

4. S.-Y. Peng, K.-T. Shr, C.-M. Chen, Y.-H. Huang, Energy-efficient128~2048/1536-point FFT
processor with resource block mapping for 3GPP-LTE system, in: 2010 International Conference
on Green Circuits and Systems (ICGCS), Shanghai, IEEE, 2010, pp. 14–17.

5. R.M. Jiang, An area-efficient FFT architecture for OFDM digital video broad- casting, IEEE
Trans. Consum. Electron. 53 (4) (2007) 1322–1326.

6. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series,
Math. Comput. 19 (90) (1965)297–301.

7. S. He, M. Torkelson, A new approach to pipeline FFT processor, in: Proceedings of IPPS'96,
The 10th International Parallel Processing Symposium, 1996, Honolulu, HI, IEEE, 1996,
pp.766–770.

8. Y. Jung, H. Yoon, J. Kim, New efficient FFT algorithm and pipeline implementation results for
FDM/DMT applications, IEEE Trans. Consum. Electron. 49 (1) (2003)14–20.

9. O. Jung-Yeol, L. Myoung-Seob, New radix-2 to the 4th power pipeline FFT processor, IEICE
Trans. Electron. 88 (8) (2005)1740–1746.

10. A. Cortés, I. Vélez, J.F. Sevillano, Radix FFTs: matricial representation and SDC/ SDF pipeline
implementation, IEEE Trans. Signal Process. 57 (7)(2009)2824–2839 June 25.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:119

