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Abstract

The purpose of this paper is to find the commutativity of prime rings with involution of second kind constrained
with generalized derivation. In fact if B is a 2-torsion free prime ring admits generalized derivation £ R —= R
associated with derivation d: B — R then ring behaviour is examined when one of the following identities holds:
(1) [Flx). F(x™)] — x = x*=0; (2) [Flx). d(x*)] — x = x*=0.
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I. INTRODUCTION

Throughout this paper, £ will represent a ring with multiplicative centre Z(R). For any pair of elements
%y € R, the commutator (resp. anti commutator) is defined by [xy] (resp.x=v) which is equal to
xy — v (resp. ®v + vx Aring R is 2-torsion free if for anyx € R, 2Zx =0 impliesx = 0. Aring R is said
to be a prime ring ifaRb =0 =a=0orb=0. An additive mapping d:R — R is a derivation if
dlxy) = dGy + =d(y) for all =¥ € B. An additive map F: R — R is called generalized derivation constrained
with derivation d if Fgy) = Flxly + xd(y) for all =¥ € R. An additive mapping = R — R is an involution if
(x") =xand xy™ = ¥"x". An element x € R is symmetric (resp. skew symmetric) if x* =x (resp. x° = —x).
The sets of all symmetric elements and skew symmetric elements in a ring R are H(R) and S(&) respectively.
An involution is said to be of first kind if Z{R} = H{R) and it is said to be of second kind if Z{RINS({A) = 0.
Motivated by Nadeem et al. [6] the possibilities in the behaviour of prime ring with involution of second kind

constrained with generalized derivation are examined.

Il. Preliminary Results

Lemma 2.1 ([6], Lemma 2.2) Let B be a 2-torsion free prime ring with involution of second kind and if R
admits a derivation d: E. — E such that [d(h).h] = 0forallh € H({R). then d(Z{R})} = (0].

Lemma 2.2 Let / be a 2-torsion free ring with involution of second kind such that == x"=0 for allx € E. Then
R is commutative.

Proof. We have

xex*=0 forallx € R. 1)

By linearizing (1), we have
xey +yex"=0 forallxv € R, )

Replacing ¥ by ¥, we get
xoy+y ex*=0 forallxy €R. (3)
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Replacing y by x in (3), we get

x% + (x*)*=0 forallx € R. 4)
Taking v € Z(R)\{0}and = by x*, in (3), we get
xloy+y e (x')=0 forallxy € R. 5)
Using R is a 2-torsion free implies
'y + (x*)*y*=0 forallxy € R. (6)
Using (4) and (6) together, we get
x(y —y*)=0 forallxy € R. (M

As (v —y*) € Z(R) implies either y — y*=0 forally € Z(R)orx® =0 forallx € R.
If v — v*=0 then y = y " for all ¥ € Z(R) which leads to contradict the involution of second kind and x> = 0 for

allx € R implies A is commutative.

I11. Main Results
Theorem 3.1 Let & be a prime ring with unity and E has involution of second kind with 2-torsion free. If &
admits a generalized derivation F:R—=R associated with  derivation d:R—= R such
that [F{x)LF(x")] — = E =" =0 forallx € R then one of the following holds:
1. A prime ring f is commutative.
2. A prime ring f is non commutative subring of division ring A, and there exists & €A such
that F(x) = &x + =6 forallx € R.
3. A prime ring R is non commutative subring of a 2 x 2 total matrix ring over a field, there
existm € M, suchthat F(x} = mx + =m forallx € R,
Proof. By the given hypothesis, we have
F(x)LF(x)] —x B x" =0 forallxe R. ®)
Replacing x by O + k inequation (8) where h € H{R}and &k € 5{R’}. we have:
[F(D),F @I+ [F G, F @]+ [F@@,.FCrN+FG)LF (K]
—0BO0-kBO-0B(-k)—kB(-k) = 0.
Using (8), we get
2[Fk)LF(h)] = 0 foralh € H(R)andk € S(R).
Since Char(R) # 2, implies
F(k).F(M)] =0 foralh € H(R)andk & S(R). 9)
Replacing h by k7 in (9), where k. € S(R) n H(R). we get
[F(k).F(k k. = 0 forallk € S(R)and k. € S(R) n Z(R).
Since k&, € Z(R) implies
[Fk)LF (k)] = 0 forallk € S(R) and k, € S(R) n Z(R). (10)
Replacing k by hy k. in (10) where hy € H{R) and k; € S({R) N Z{A}. we get
[F (hyk.).F (k)] = 0 forallhy € H{(R)and k. € S{R) n Z(R).
which further implies
[F (hgdk, +hyd(k.).F (k)] = Oforall hy € H(R) and k, € S(R) N Z(R).

Equation (9) and primeness gives
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[Op.F (k)]dik.) =0 forall O, € H{R) and k. € S(R) N Z{R).
Using d(k.) € Z(R). we get
[hyF (k)] = 0 or d(k.) = 0 forallhy € H(R) andk, € S(R)n Z(R).
First assume that di{k.)=0for all k. €5(R) N Z(R). Replacing k. by DOk in (9) where
Oy € H(R)and k. € 5(R) n Z(R) and using d(k.) = 0, we get
[F(2,).F(2)]k, =0forall O;. 0 € H(R) and k. € 5(R) n Z(R).
Again using primeness of R, we get
[F(D0,).F(D)] =0 forall 0, C € H(R)
(11)
Using equation (9) and (11), we get
[Flx),F(O)] =0 forall D, e H(R)and x € R (12)
Again replacing T by kk, in (12) and proceeding as above, we get
[F(x),F(y)] =0 forall x,y € R.

In the view of ([3], Theorem 3.4) we get desired result in this case.

Now if

[k, F (k)] =0forall 0 € H(R)and k. € S(R) n Z(R). (13)
Replacing kg by kyk. where k; € S({R)and k. € S{R) n Z(R) and using primeness, we get

[k, F (k)] =0 forall k, € S(R) and k. € S(R) N Z(R). (14)
Since every element of x can be uniquely represent as 2¥ = O + & where T € H{R) andk € 5(K) and then

using (13) and (14), we get
[y F (k] =0forally € R andk, € S(R) n Z(R),

implies Fik,) e Z(R) for all k. € 5(R}y n Z{R). Replacing & by Ok, in 9)
T € H(R)andk, € S(R) N Z(R), we get

[O.F (0)]dk,) = 0forallhe H(R) and k. € S(R) N Z(R).
Again using primeness of K, we ge either [lF(h)] = 0 for all h € H(R) or d{k.,)} =0 for all
k.= 5(R)n Z(R). The case d(k.} =10 is discussed above.
So we left with the case get [hF (h)] = 0 for all h € H(R).Replacing h by k.k in (9) where k € S(R) and
k.eS(RIN Z(R). We get [FlkELFk)]= 0 where ke S(R} and k.e5(RIn Z(R). Using
F(k.) € Z(R) for allk, e S(R) n Z(R)and SR} n Z(R) = 0 implies [k.F (k)] =0 for all k e S(R).
Replace k by k.t we get [hd(h)lki= 0. Again using primeness and S{R) n Z(R) = 0. implies
[hd(h)] =0 for all h € H(E}) In view of Lemma 21 we have at dk.) =0 for all
k. & S(R} n Z(R) applying same process we get our result.

Theorem 3.2. Let & be a prime ring has involution of second kind with 2- torsion free. If E admitsa
generalized derivation F : B — R associated with derivation d : & — R such that [ Flx).d(x*)] — x = x*=0
for all x € R then R is commutative.
PType equation here.roof. If & = &, then we have x = x*=0. By Lemma 2.2 we get R is commutative.
By the given hypothesis, we have

[F(x),d(x*)] —x ox"=0forall x € R. (15)
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Replacing x by x + ¥ in equation (15), for all x.¥ € R, we have
[Flx), d(y*)] + [F(3).d(x*)] = 0 for all x.¥ € R. (16)
Replacing x by k. and ¥ by x” in (16), we get
[F(k.).d(x)] = 0 forallx € Rand k. € 5(R) n Z(R).

Thus by ([10], Theorem 2) we conclude that F (k.) € Z(R)forall k. € S(R) n Z(R).
Replacing x by O + & in (16), we get

[F(h)d(—k)] + [F(k).d(h)]= Oforallh € H(R) and k € S(R). 17)
Replacing k by hk, in (17) where D& H(R)and k. € S(R)n Z(R) in (17), then we have
[F(h).hld(k,) + [d (h).h]d (k.) = 0 forallh € H(R)and k. € S(R) n Z(R).
Using primeness, we have either d (k.) = 0 or [F(h)h] 4+ [d(h).(h)] = 0 for all h & H({E) and
k. = 8(R) n Z(R). Noting that F(k)e Z(R) and
F (k. )x + (k. )d(x) =F (k.x) = F(xk.) = F (x)k, + xd(k.) and [F (k.x),x] =[F (xk.).x] for all
k.eS(R)NZ(A) and x € R, we get [Flx),x]0 =[d(x).x] for all x €R. Using this
[Fh)h]l+ [d(h).(h)] = 0 for all T & H({R) becomes [d(Z), 0] = 0 for all T € H(R) by Lemma 2.1
implies d (k) = 0forall k. € S(R) n Z(R).
Now if d (k.} = 0 for all k, € S(R) n Z(R). Replacing x by xk. in (16) where k. € S(R) n Z{R) and
comparing with (15) we get [ Flx).d(y*)] = 0 for all x.y € R.That is [Flx),d(y)] = 0 for all x.y € R,
Then ([10], Theorem 2) gives us F (x} € Z(R) forall x € R i.e. F (R} = Z(H) implies [F (x),¥] = @ for

all x.y € R implies [F(x).x] = forall x € R using ([3], Lemma 2.2) we get & is commutative.
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