Generalized Derivations in Prime Rings with Involution

Deepak Kumar¹, Bharat Bhushan²

^{1, 2} Department of Mathematics, Punjabi University, Patiala-147002 India

Abstract

The purpose of this paper is to find the commutativity of prime rings with involution of second kind constrained with generalized derivation. In fact if \mathbf{R} is a 2-torsion free prime ring admits generalized derivation $F: \mathbf{R} \to \mathbf{R}$ associated with derivation $\mathbf{d}: \mathbf{R} \to \mathbf{R}$ then ring behaviour is examined when one of the following identities holds: (1) $[F(\mathbf{x}), F(\mathbf{x}^*)] - \mathbf{x} \circ \mathbf{x}^* = 0$; (2) $[F(\mathbf{x}), \mathbf{d}(\mathbf{x}^*)] - \mathbf{x} \circ \mathbf{x}^* = 0$.

Keywords - Derivation, Generalized Derivation, Involution, Prime ring

2010 Mathematics subject classification - 16W10, 16W25, 16N60

I. INTRODUCTION

Throughout this paper, R will represent a ring with multiplicative centre Z(R). For any pair of elements $x, y \in R$, the commutator (resp. anti commutator) is defined by [x, y] (resp. $x \circ y$) which is equal to xy - yx (resp. xy + yx. A ring R is 2-torsion free if for any $x \in R$, 2x = 0 implies x = 0. A ring R is said to be a prime ring if $aRb = 0 \Rightarrow a = 0$ or b = 0. An additive mapping $d: R \to R$ is a derivation if d(xy) = d(x)y + xd(y) for all $x, y \in R$. An additive map $F: R \to R$ is called generalized derivation constrained with derivation d if F(xy) = F(x)y + xd(y) for all $x, y \in R$. An additive mapping $*: R \to R$ is an involution if $(x^*)^* = x$ and $xy^* = y^*x^*$. An element $x \in R$ is symmetric (resp. skew symmetric) if $x^* = x$ (resp. $x^* = -x$). The sets of all symmetric elements and skew symmetric elements in a ring R are H(R) and S(R) respectively. An involution is said to be of first kind if $Z(R) \subseteq H(R)$ and it is said to be of second kind if $Z(R) \cap S(R) \neq 0$. Motivated by Nadeem et al. [6] the possibilities in the behaviour of prime ring with involution of second kind constrained.

II. Preliminary Results

Lemma 2.1 ([6], Lemma 2.2) Let R be a 2-torsion free prime ring with involution of second kind and if R admits a derivation d: $R \rightarrow R$ such that [d(h), h] = 0 for all $h \in H(R)$, then d(Z(R)) = (0).

Lemma 2.2 Let *R* be a 2-torsion free ring with involution of second kind such that $\mathbf{x} \circ \mathbf{x}^* = 0$ for all $\mathbf{x} \in R$. Then *R* is commutative.

Proof. We have

$$\mathbf{x} \circ \mathbf{x}^* = 0 \text{ for all } \mathbf{x} \in \mathbf{R}.$$
 (1)

By linearizing (1), we have

$$\mathbf{x} \circ \mathbf{y}^* + \mathbf{y} \circ \mathbf{x}^* = 0 \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{R}.$$
 (2)

Replacing y by y*, we get

$$\mathbf{x} \circ \mathbf{y} + \mathbf{y}^* \circ \mathbf{x}^* = 0 \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{R}.$$
(3)

Replacing y by x in (3), we get

$$\mathbf{x}^2 + (\mathbf{x}^*)^2 = 0 \text{ for all } \mathbf{x} \in \mathbb{R}.$$

$$\tag{4}$$

Taking $y \in Z(\mathbb{R} \setminus \{0\}$ and x by x^2 , in (3), we get

$$(x^2 \circ y + y^* \circ (x^*)^2 = 0 \text{ for all } x, y \in \mathbb{R}.$$
 (5)

Using **R** is a 2-torsion free implies

$$x^{2}y + (x^{*})^{2}y^{*} = 0$$
 for all $x, y \in R$. (6)

Using (4) and (6) together, we get

$$\mathbf{x}^2(\mathbf{y} - \mathbf{y}^*) = 0 \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}.$$
(7)

As $(y - y^*) \in Z(R)$ implies either $y - y^*=0$ for all $y \in Z(R)$ or $x^2 = 0$ for all $x \in R$. If $y - y^*=0$ then $y = y^*$ for all $y \in Z(R)$ which leads to contradict the involution of second kind and $x^2 = 0$ for

all $\mathbf{x} \in \mathbf{R}$ implies \mathbf{R} is commutative.

III. Main Results

Theorem 3.1 Let R be a prime ring with unity and \mathbb{R} has involution of second kind with 2-torsion free. If R admits a generalized derivation $F: \mathbb{R} \to \mathbb{R}$ associated with derivation $d: \mathbb{R} \to \mathbb{R}$ such that $[F(x), F(x^*)] - x \boxtimes x^* = 0$ for all $x \in \mathbb{R}$ then one of the following holds:

- 1. A prime ring R is commutative.
- 2. A prime ring R is non commutative subring of division ring Δ , and there exists $\delta \in \Delta$ such that $F(x) = \delta x + x\delta$ for all $x \in R$.

3. A prime ring R is non commutative subring of a 2 × 2 total matrix ring over a field, there exist $m \in M$, such that F(x) = mx + xm for all $x \in R$.

Proof. By the given hypothesis, we have

$$[\mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{x}^*)] - \mathbf{x} \ \exists \ \mathbf{x}^* = \mathbf{0} \text{ for all } \mathbf{x} \in \mathbf{R}.$$
(8)

Replacing x by $\Box + k$ in equation (8) where $h \in H(R)$ and $k \in S(R)$, we have:

 $[F(\Box), F(\Box)] + [F(k), F(\Box)] + [F(\Box), F(-k)] + [F(k), F(-k)]$

 $-\Box \Box \Box - k \Box \Box - \Box \Box (-k) - k \Box (-k) = 0.$

Using (8), we get

2[F(k), F(h)] = 0 for all $h \in H(R)$ and $k \in S(R)$.

Since $Char(R) \neq 2$, implies

 $[F(k), F(h)] = 0 \text{ for all } h \in H(R) \text{ and } k \in S(R).$ (9)

Replacing h by k_c^2 in (9), where $k_c \in S(R) \cap H(R)$, we get

$$[F(k), F(k_c)]k_c = 0$$
 for all $k \in S(R)$ and $k_c \in S(R) \cap Z(R)$.

Since $k_c \in Z(R)$ implies

$$[\mathbf{F}(\mathbf{k}), \mathbf{F}(k_c)] = 0$$
 for all $\mathbf{k} \in S(R)$ and $k_c \in S(R) \cap Z(R)$. (10)

Replacing k by $\mathbf{h}_0 k_c$ in (10) where $\mathbf{h}_0 \in \mathbf{H}(R)$ and $k_c \in \mathbf{S}(R) \cap \mathbf{Z}(R)$, we get

$$[F(h_0k_c), F(k_c)] = 0$$
 for all $h_0 \in H(R)$ and $k_c \in S(R) \cap Z(R)$.

which further implies

$$[F(h_0)k_c + h_0 d(k_c), F(k_c)] = 0$$
 for all $h_0 \in H(R)$ and $k_c \in S(R) \cap Z(R)$.

Equation (9) and primeness gives

Volume 8, Issue XII, DECEMBER/2018

 $[\Box_{\theta}, F(k_c)]d(k_c) = 0$ for all $\Box_{\theta} \in H(R)$ and $k_c \in S(R) \cap Z(R)$.

Using $d(k_c) \in Z(R)$, we get

$$[\mathbf{h}_0, \mathbf{F}(k_c)] = 0 \text{ or } \mathbf{d}(k_c) = 0 \text{ for all } \mathbf{h}_0 \in \mathbf{H}(R) \text{ and } k_c \in \mathbf{S}(R) \cap \mathbb{Z}(R).$$

First assume that $d(k_c) = 0$ for all $k_c \in S(R) \cap Z(R)$. Replacing k_c by $\Box_0 k_c$ in (9) where $\Box_0 \in H(R)$ and $k_c \in S(R) \cap Z(R)$ and using $d(k_c) = 0$, we get

$$[F(\square_0), F(\square)]k_c = 0 \text{ for all } \square_0, \square \in H(R) \text{ and } k_c \in S(R) \cap Z(R).$$

Again using primeness of R, we get

$$[F(\square_{0}), F(\square)] = 0$$
 for all $\square_{0}, \square \in H(R)$

(11)

Using equation (9) and (11), we get

$$[F(x), F(\Box)] = 0 \text{ for all } \Box_0 \in H(R) \text{ and } x \in R$$
(12)

Again replacing \Box by kk_c in (12) and proceeding as above, we get

$$[F(x), F(y)] = 0$$
 for all $x, y \in R$.

In the view of ([3], Theorem 3.4) we get desired result in this case. Now if

$$[k_o, F(k_c)] = 0$$
 for all $\Box_0 \in H(\mathbb{R})$ and $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$. (13)

Replacing h_0 by $k_0 k_c$ where $k_0 \in S(R)$ and $k_c \in S(R) \cap Z(R)$ and using primeness, we get

$$[k_o, F(k_c)] = 0 \text{ for all } k_o \in S(R) \text{ and } k_c \in S(R) \cap Z(R).$$

$$(14)$$

Since every element of x can be uniquely represent as $2y = \Box + k$ where $\Box \in H(R)$ and $k \in S(R)$ and then using (13) and (14), we get

$$2[y, F(k_c)] = 0$$
 for all $y \in R$ and $k_c \in S(R) \cap Z(R)$

implies $F(k_c) \in Z(R)$ for all $k_c \in S(R) \cap Z(R)$. Replacing k by $\Box k_c$ in (9) $\Box \in H(R)$ and $k_c \in S(R) \cap Z(R)$, we get

$$[\Box, F(\Box)]d(k_c) = 0$$
 for all $h \in H(R)$ and $k_c \in S(R) \cap Z(R)$.

Again using primeness of R, we ge either [h, F(h)] = 0 for all $h \in H(R)$ or $d(k_c) = 0$ for all $k_c \in S(R) \cap Z(R)$. The case $d(k_c) = 0$ is discussed above.

So we left with the case get $[\mathbf{h}, \mathbf{F}(\mathbf{h})] = 0$ for all $\mathbf{h} \in H(\mathbb{R})$. Replacing \mathbf{h} by $\mathbf{k}_c \mathbf{k}$ in (9) where $\mathbf{k} \in S(\mathbb{R})$ and $\mathbf{k}_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$. We get $[\mathbf{F}(\mathbf{k}_c \mathbf{k}), \mathbf{F}(\mathbf{k})] = 0$ where $\mathbf{k} \in S(\mathbb{R})$ and $\mathbf{k}_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$. Using $\mathbf{F}(\mathbf{k}_c) \in Z(\mathbb{R})$ for all $\mathbf{k}_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$ and $S(\mathbb{R}) \cap Z(\mathbb{R}) \neq 0$ implies $[\mathbf{k}, \mathbf{F}(\mathbf{k})] = 0$ for all $\mathbf{k} \in S(\mathbb{R})$. Replace \mathbf{k} by $\mathbf{k}_c \mathbf{k}$ we get $[\mathbf{h}, \mathbf{d}(\mathbf{h})]\mathbf{k}_c^2 = 0$. Again using primeness and $S(\mathbb{R}) \cap Z(\mathbb{R}) \neq 0$, implies $[\mathbf{h}, \mathbf{d}(\mathbf{h})] = 0$ for all $\mathbf{h} \in H(\mathbb{R})$. In view of Lemma 2.1 we have at $\mathbf{d}(\mathbf{k}_c) = 0$ for all $\mathbf{k}_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$ applying same process we get our result.

Theorem 3.2. Let R be a prime ring has involution of second kind with 2-torsion free. If R admits a generalized derivation $F: R \to R$ associated with derivation $d: R \to R$ such that $[F(x), d(x^*)] - x \circ x^* = 0$ for all $x \in R$ then R is commutative.

PType equation here roof. If d = 0, then we have $x \circ x^* = 0$. By Lemma 2.2 we get R is commutative.

By the given hypothesis, we have

$$[\mathbf{F}(\mathbf{x}), \mathbf{d}(\mathbf{x}^*)] - \mathbf{x} \circ \mathbf{x}^* = 0 \text{ for all } \mathbf{x} \in \mathbb{R}.$$
(15)

Replacing x by x + y in equation (15), for all $x, y \in \mathbb{R}$, we have

$$[F(x), d(y^*)] + [F(y), d(x^*)] = 0 \text{ for all } x, y \in \mathbb{R}.$$
(16)

Replacing x by k_c and y by x^* in (16), we get

$$[F(k_c), d(x)] = 0$$
 for all $x \in R$ and $k_c \in S(R) \cap Z(R)$.

Thus by ([10], Theorem 2) we conclude that $F(k_c) \in Z(R)$ for all $k_c \in S(R) \cap Z(R)$.

Replacing x by $\Box + k$ in (16), we get

$$[F(\mathbf{h}), d(-k)] + [F(k), d(\mathbf{h})] = 0$$
 for all $\mathbf{h} \in H(R)$ and $k \in S(R)$. (17)

Replacing k by hk_c in (17) where $\Box \in H(R)$ and $k_c \in S(R) \cap Z(R)$ in (17), then we have $[F(\mathbf{h}), \mathbf{h}]d(k_c) + [d(\mathbf{h}), \mathbf{h}]d(k_c) = 0$ for all $\mathbf{h} \in H(R)$ and $k_c \in S(R) \cap Z(R)$.

Using primeness, we have either $d(k_c) = 0$ or $[F(\mathbf{h}), \mathbf{h}] + [d(\mathbf{h}), (\mathbf{h})] = 0$ for all $\mathbf{h} \in H(\mathbb{R})$ and $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$. Noting that $F(k_c) \in Z(\mathbb{R})$ and $F(k_c)x + (k_c)d(x) = F(k_cx) = F(xk_c) = F(x)k_c + xd(k_c)$ and $[F(k_cx), x] = [F(xk_c), x]$ for all $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$ and $x \in \mathbb{R}$, we get [F(x), x] 0 = [d(x), x] for all $x \in \mathbb{R}$. Using this $[F(\mathbf{h}), \mathbf{h}] + [d(\mathbf{h}), (\mathbf{h})] = 0$ for all $\Box \in H(\mathbb{R})$ becomes $[d(\Box), \Box] = 0$ for all $\Box \in H(\mathbb{R})$ by Lemma 2.1 implies $d(k_c) = 0$ for all $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$.

Now if $d(k_c) = 0$ for all $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$. Replacing x by xk_c in (16) where $k_c \in S(\mathbb{R}) \cap Z(\mathbb{R})$ and comparing with (15) we get $[F(x), d(y^*)] = 0$ for all $x, y \in \mathbb{R}$. That is [F(x), d(y)] = 0 for all $x, y \in \mathbb{R}$. Then ([10], Theorem 2) gives us $F(x) \in Z(\mathbb{R})$ for all $x \in \mathbb{R}$ i.e. $F(\mathbb{R}) \subset Z(\mathbb{R})$ implies [F(x), y] = 0 for all $x, y \in \mathbb{R}$ and $x, y \in \mathbb{R}$ implies [F(x), x] = 0 for all $x \in \mathbb{R}$ using ([3], Lemma 2.2) we get \mathbb{R} is commutative.

References

- Ali, S. and Dar, N. A.,, "On *- commuting mappings and derivations in ring with involution," Turk J Math, 40, 2016, 884-894.
- [2] Ali, S. and Dar, N. A., "On * centralizing mappings in ring with involution", Georgian Math. J. 21(1), 2014, 25-28.
- [3] Bell, H. E. and Rehman, N., "Generalized derivation with commutativity and anti commutativity conditions", Math. J. Okayama Univ., 49, 2007, 139-147.
- [4] Bresar, M., "Centralizing mappings and derivations in prime rings", J. Al-gebra, 156, 1993, 385-394.
- [5] Bresar, M., "On the distance of composition of two derivation to the generalized derivation", Glasgow Math. J., 33, 1991, 89-93.
- [6] Dar, N. A. and Khan, A. N., "Generalized Derivations in Rings with Involution", Algebra Colloquium, 24(3), 2017, 393-399.
- [7] Divinsky, N., "On commuting automorphisms of rings," Trans. Roy. Soc. Canada Sect.iii, 3(49), 1955, 19-22.
- [8] Herstein, I. N., "A note on derivations", cand. Math. Bull. 21(1978), 369-370.
- [9] Herstein, I. N., "Rings with Involution", Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, Ill.-London, 1976.
- [10] Lee, P. H. and Lee, T. K., "Lie ideals of prime ring with derivation", Bull. Inst. Of Math. Acad. Sinca, 11(1), 1983, 75-80.