
ABSTRACT─ MapReduce and additionally 

Hadoop are utilized to manage bunch preparing for 

slots submitted from various clients (i.e., 

MapReduce workloads). In spite of numerous 

exploration endeavors committed to enhance the 

execution of a single MapReduce work, there is 

moderately little consideration paid to the 

framework execution of MapReduce workloads. 

Therefore, this paper to improve the performance of 

MapReduce workloads, we proposed a dynamic job 

ordering and map/reduce slot configuration 

algorithms and these to algorithms can mitigate the 

makespan as well as total completion time of the 

scheduling process of jobs. Makespan and total 

completion time (TCT) are two key performance 

metrics. Therefore, in this paper, we aim to optimize 

these two metrics.  

Keywords: MapReduce Programming Model, 

Hadoop, Job Ordering 

1. INTRODUCTION 

In cloud systems, a provider offers elastic computing 

assets (virtual compute nodes) to some of users. The 

info of the underlying infrastructure is transparent to 

the users. This computing paradigm is attracting 

increasing hobby from both instructional researchers 

and industry practitioners as it permits users to scale 

their packages up and down seamlessly in a pay-as-

you-cross manner. To disarm the entire energy of 

cloud computing, it's far broadly established that a 

cloud statistics processing machine must offer a 

excessive diploma of elasticity, scalability and fault 

tolerance. MapReduce is recognized as a likely 

manner to perform elastic information processing in 

the cloud. 

MapReduce is considerably unique from formerly 

analyzed models of parallel computation as it 

interleaves parallel and sequential computation. In 

latest years several nontrivial MapReduce algorithms 

have emerged, from computing the diameter of a 

graph to implementing the EM algorithm to cluster 

large records sets. Each of these algorithms gives a 

few insights into what can be completed in a 

MapReduce framework; but, there may be a loss of 

rigorous algorithmic analyses of the problems 

involved. 

MapReduce has been extensively seemed as a 

promising opportunity to large-scale data or statistics 

evaluation consisting of graph processes, device 

studying, and statistics mining. These programs 

which might be submitted to MapReduce clusters are 

done within the shape of jobs, and every activity 

contains a number of obligations. Every venture can 

be assigned to a node, which is normally known as 

Optimizing Makespan and Total Achievement Time Collectively To 

Advance the Presentation of the Mapreduce Workloads 

1Pippala Praveen   2Mrs.Vanamala Sunitha 

1M.Tech Student, Department of Bioinformatics, School of Information Technology JNTU, Kukatpally, Hyderabad. 

2Assistant Professor in IT Department in Kakatiya Institute of Technology and Science, Warangal. 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:10



slave node, via task scheduler in clusters. Task 

scheduler is one of the middle technologies of 

MapReduce, it specially controls the order of project 

executing and resource allocation. In addition, it may 

without delay have an impact on the performance of 

MapReduce clusters and the execution time of the 

exclusive priority responsibilities. Therefore, the 

precise venture scheduling is very crucial for 

MapReduce clusters. MapReduce itself presents three 

essential task scheduling algorithms, which are the 

First-In-First-Out (FIFO), the potential scheduling, 

and the honest scheduling. FIFO algorithm is the 

build-in scheduler in MapReduce clusters. The 

benefits of FIFO are easy and easy to implement, 

because it deals with the jobs within the way of first 

in first out, this is, the older task may be deal first, 

and the new process may be treated later. However, it 

does now not take completely into account that there 

are distinctive sizes of jobs consisting of small and 

large jobs in clusters, and does no longer bear in 

mind the support of more than one customer. To deal 

with the issues of FIFO, the truthful scheduling is 

developed to cope with small and big jobs as pretty 

as viable in clusters. In order to gain this goal, 

process priorities, pool weights, and postpone 

scheduling is introduced. The scheduling of jobs is 

managed through activity priorities with a suitable 

weight, and weight is split into a positive degree. But 

the honest scheduling wishes a lot of manually 

configuration, which could significantly affect the 

overall performance of the roles. 

The data analysis applications variety in 

functionality, complexity, resource wishes, and facts 

transport deadlines. This variety creates competing 

requirements for software design, activity scheduling, 

and workload management rules in MapReduce 

environments. However, in spite of different user 

goals one purpose is commonplace: to enhance the 

usability and performance of the MapReduce 

framework. The process execution efficiency is 

particularly essential for processing manufacturing 

workloads whilst a given set of MapReduce jobs and 

workflows wishes to be finished periodically on new 

facts. Typically, the default FIFO scheduler is used 

for processing manufacturing jobs for the reason that 

primary performance objective is to minimize the 

general execution time (makespan) of a given set. 

Such manufacturing workloads are analyzed off-line 

for optimizing their execution. There are a slew of 

optimization strategies introduced for enhancing 

statistics read/write performance in a hard and fast of 

manufacturing jobs. For exceptional MapReduce jobs 

working over the equal dataset, a more efficient task 

scheduling proposes merge their executions in order 

that the input statistics is best scanned once. 

2. RELATED WORK 

MapReduce is a famous computing paradigm for big-

scale information processing in cloud computing. 

However, the slot-based MapReduce system (e.g., 

Hadoop MRv1) can be afflicted by poor performance 

because of its unoptimized resource allocation. To 

address it S. Tang, B. S Lee, and B He recognized & 

optimizes the useful resource allocation from three 

key factors. First, because of the pre-configuration of 

awesome map slots and reduce slots which are not 

mutually interchangeable; slots may be seriously 

beneath-utilized. Because map slots might be 

absolutely utilized while reduce slots are empty, and 

vice-versa. They proposed an alternative approach 

known as Dynamic Hadoop Slot Allocation by 

retaining the slot-based totally version. It relaxes the 

slot allocation requirement to allow spaces to be 

reallocated to either outline diminish assignments 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:11



depending on their necessities. Second, the 

theoretical execution can handle the straggler bother, 

which has demonstrated to improve the execution for 

a single procedure however to the detriment of the 

bunch execution. In view of this, they proposed 

Speculative Execution Performance Balancing to 

balance the performance tradeoff among a single task 

and a batch of jobs. Third, put off scheduling has 

shown to enhance the records locality but on the fee 

of fairness. Alternatively, they proposed a method 

called Slot PreScheduling that may improve the facts 

locality but and not using a impact on fairness. 

Finally, through combining those techniques 

collectively, they form a step-by using-step slot 

allocation machine referred to as DynamicMR that 

may improve the overall performance of MapReduce 

workloads substantially. 

S. Tang, B. S Lee, and B He proposed Dynamic 

Hadoop Fair Schedulers (DHFS) to enhance the 

utilization and performance of MapReduce clusters at 

the same time as making sure the fairness. The center 

technique is dynamically allocating map (or reduce) 

slots to map and decrease tasks. Two types of DHFS 

are presented, namely, PI-DHFS and PD-DHFS, 

based totally on equity for cluster and swimming 

pools, respectively. The experimental effects display 

that their proposed DHFS can enhance the 

performance and utilization of the Hadoop cluster 

appreciably. 

P. Sanders and J. Speck tested the parallel activity 

scheduling problem using a version for execution 

time which accounts for each computational speedup 

and communication slowdown with the purpose to 

reduce makespan. The scheduling trouble for a 

sequence of submitted jobs studied entails the 

determination of what number of processors to assign 

to a task and a start time for starting execution. They 

investigated a easy but powerful set of rules, Earliest 

Completion Time. This on line algorithm minimizes 

the of entirety time for a process given the modern 

status of the system in spite of everything previous 

jobs have been scheduled. 

Dynamic map-reduce method presented by means of 

J. Polo et al avoidance overload in server at 

scheduling approach for multi-job MapReduce 

environments, and exhibit its allocation technique. 

The approach dynamically adjusts the allocation of to 

be had execution slots across jobs so that you can 

meet their final touch time dreams, supplied at 

submission time. The system constantly video display 

units the common venture duration for all jobs in all 

nodes, and uses this information to calculate and 

modify the anticipated of entirety time for all jobs. 

Dynamic resource allocation set of rules used for 

important server of un-obtained storage records 

forward to physical node of related server. Finally, 

the unreachable storage information added from 

related server to the specific receiver. So, mission 

lowering the total quantity of network site visitors for 

a given workload. 

3. FRAMEWORK 

A. Overview of the Proposed System 

In this paper, Makespan and Total Completion Time 

(TCT) are two major performance metrics to the 

MapReduce workloads. Generally, makespan is 

defined because the term for the reason that begin of 

the first task until the entirety of the final task for a 

hard and fast of jobs. It considers the computation 

time of jobs and is often used to degree the overall 

performance and utilization efficiency of a machine. 

In assessment, general of completion time is called 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:12



the sum of finished time periods for all jobs for the 

reason that begin of the primary job. It is a 

generalized makespan with queuing time covered. 

We can use it to measure the satisfaction to the 

device from a single task’s perspective through 

dividing the entire of entirety time by using the 

quantity of jobs. 

In this paper, we describe the MK_JR set of rules that 

produces the optimized task order and also prove its 

approximation ratio. We also describe the process 

order which offers the worst, i.e., longest makespan, 

that's used for derivation of the higher sure makespan 

of a workload. Next, we describe the MK_TCT_JR 

algorithm, which optimizes each makespan and 

overall of completion time. 

B. Classify the Slots 

The overall performance of a MapReduce cluster 

through optimizing the slots utilization basically from  

perspectives; first, classify the slots into  sorts, 

specifically, idle slots (i.e., no strolling 

responsibilities) and busy slots (i.e., with going for 

walks obligations) . Given the overall wide variety of 

map and reduce slots configured with the aid of 

customers, one optimization technique (i.e., macro-

level optimization) is to enhance the slot usage by 

means of maximizing the wide variety of busy slots 

and decreasing the quantity of idle slots. Second, it is 

well worth noting that not each busy slot can be 

successfully utilized. Thus, our optimization 

approach is to enhance the usage efficiency of busy 

slots after the macrolevel optimization. 

Slot Allocation: 

Current layout of MapReduce suffers from a below-

utilization of the respective slots because the range of 

map and decrease responsibilities varies over time, 

resulting in events where the wide variety of slots 

allocated for map/reduce is smaller than the wide 

variety of map/reduce obligations. Our dynamic slot 

allocation policy is primarily based on the 

clarification at one-of-a-kind period of time there 

may be idle map (reduce) slots, because the job 

proceeds from map phase to reduce segment. We can 

utilize the unused guide slots are the ones over-

burden reduces undertakings to upgrade the 

execution of the MapReduce workload, and the other 

way around. For example, toward the start of 

MapReduce workload calculation, there may be no 

registering decrease obligations and just figuring map 

commitments, i.e., all the calculation the thickness 

fundamentally based bunching corresponding to a 

vast range of parameter settings. 

C. Job Execution 

Word Count Example reads text documents and 

counts how regularly words arise. The center is 

textual content documents and the output is text 

documents, each line of which contains a phrase and 

rely of ways often it happened, separated via a tab. 

Each mapper takes a line as input and breaks it into 

words. It then emits a key/value pair of the phrase 

and 1. Each reducer sums the counts for each phrase 

and emits a single key/value with the sum and phrase. 

As an enhancement, the reducer is additionally 

utilized as a combiner on the conduct yields. This 

reduces the measure of information dispatched all 

through the group by utilizing joining each 

expression into a single record. 

4. EXPERIMENTAL RESULTS 

In this experiment, we take inputs and run as 

unoptimized by using normal map reducer concept. 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:13



Here we are running 3 types of jobs such as word 

count, sorting & creating inverted index. After run 

these three jobs, we can run the MK_JR algorithm. 

As per this algorithm, we order jobs in J based on the 

following principles: Partition jobs set J into two 

disjoint sub-sets JobA and JobB: 

JobA = when T(m) <= T(r) 

JobB = when T(m) > T(r) 

 

MK_TCT_JR algorithm is also similar to MK_JR 

algorithm but difference is based on time threshold 

value it arrange the jobs. After completion of these 

two algorithms, we can run the MK_SF_JR 

algorithm. This algorithm shows that how many 

processes required for job and MK_TCT_SF_JR 

algorithm provide the processes information based on 

time threshold. 

 

Finally, we can see the makespan time for all 

algorithms. 

5. CONCLUSION 

In this paper we conclude that, we proposed job 

ordering optimization algorithm & map/reduce slot 

configuration optimization algorithm. By using these 

two algorithms provided that the makespan is optimal 

but total completion time is poor. To improve this, 

we proposed moreover, a new grasping job ordering 

algorithm and a map/reduce slot configuration 

algorithm to minimize the makespan and total 

crowning glory time together. From the experimental 

consequences, we discovered that we completed our 

purpose is minimizing makespan and total 

completion time. 

REFERENCES 

[1] Shanjiang Tang, Bu-Sung Lee, and Bingsheng 

He, “Dynamic Job Ordering and Slot 

Configurations for MapReduce Workloads”, 

IEEE Transactions On Services Computing, 

VOL 9, NO 1, JANUARY/FEBRUARY 2016 

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K. 

Elmeleegy, S. Shenker, and I. Stoica, “Job 

scheduling for multi-user mapreduce clusters,” 

EECS Dept., Univ. California, Berkeley, CA, 

USA, Tech. Rep. UCB/EECS-2009-55, Apr. 

2009 

[3] A. Verma, L. Cherkasova, and R. H. Campbell, 

“Two sides of a coin: Optimizing the schedule of 

mapreduce jobs to minimize their makespan and 

improve cluster performance,” in Proc. IEEE 

20th Int. Symp. Model., Anal. Simul. Comput. 

Telecommun. Syst., 2012, pp. 11–18. 

[4] S. Tang, B.-S. Lee, and B. He, “Dynamicmr: A 

dynamic slot allocation optimization framework 

for mapreduce clusters,” IEEE Trans. Cloud 

Comput., vol. 2, no. 3, pp. 333–347, Jul. 2014. 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:14



[5] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. 

Whalley, J. Torres, and E. Ayguade, “Deadline-

based mapreduce workload management,” IEEE 

Trans. Netw. Service Manage., vol. 10, no. 2, pp. 

231–244, Jun. 2013. 

[6] S. Tang, B.-S. Lee, and B. He, “Dynamic slot 

allocation technique for mapreduce clusters,” in 

Proc. IEEE Int. Conf. Cluster Comput., Sep. 

2013, pp. 1–8 

[7] P. Sanders and J. Speck, “Efficient parallel 

scheduling of malleable tasks,” in Proc. IEEE 

Int. Parallel Distrib. Process. Symp., 2011, pp. 

1156–1166. 

[8] W. Cirne and F. Berman, “When the herd is 

smart: Aggregate behavior in the selection of job 

request,” IEEE Trans. Parallel Distrib. Syst., vol. 

14, no. 2, pp. 181–192, Feb. 2003.  

[9] T. Condie, N. Conway, P. Alvaro, J. M. 

Hellerstein, K. Elmeleegy, and R. Sears, 

“Mapreduce online,” in Proc. 7th USENIX Conf. 

Netw. Syst. Design Implementation, 2010, p. 21.  

[10] J. Dean and S. Ghemawat, “Mapreduce: 

Simplified data processing on large clusters,” in 

Proc. 6th Conf. Symp. Oper. Syst. Design 

Implementation, 2004, vol. 6, p. 10. 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:15


