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ABSTRACT 

 Owing to the sensitive nature of the variables involved in  geotechnical 
engineering problems, which is difficult to quantify and involve considerable uncertainty, 
the existing solutions e.g. mathematical, numerical and empirical, lack precision.  The 
artificial neural networks have the ability to learn from data and model the non-linear 
relationship between the variables and hence, it has been widely used for modeling 
problems in geotechnical engineering. Several algorithms are available for developing 
artificial neural network models for regression problems among which, the 
backpropagation algorithm is widely used. This paper discusses the limitations of BPA 
algorithm and the efficient alternate algorithm that can be used for prediction for modeling 
geotechnical engineering problems. 
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1  INTRODUCTION 

 The data driven approaches are gaining popularity in geotechnical engineering 
as is evidenced by more number of  applications over the last decade. These techniques 
have proved to be an efficient alternative to traditional methods for both estimation and 
forecasting. This follows from the fact that the theoretical methods have been simplified in 
order to model the complex and uncertain behaviour of the soil. But, the data driven 
approaches do not make any assumptions and their efficiency depends on the accuracy of 
the data.  
 Artificial neural network (ANN) is the most widely used method among the 
data driven approaches. It is a system composed of many simple processing elements 
operating in parallel. One of the most important properties of the ANNs is that they are 
universal approximators, i.e. they can fit any nonlinear function to any arbitrary degree of 
accuracy. This approach is usually accurate when numerical data are precise enough and 
representative of the system behavior.  
 The data division forms an important part of developing ANN model in which 
the available data are divided into training and testing sets. A brief description of ANN 
modeling process and the advantage of using Levenberg-Marquardt backpropagation 
algorithm (LMBPA) with Bayesian regularisation in data division for ANN model 
development  are discussed in this paper. 

2 ARTIFICIAL NEURAL NETWORKS 

 Artificial neural networks referred to as parallel distributed, connectionist 
networks are ensembles of interconnected, usually nonlinear computational units called 
neurons or nodes, which are emulated by research into human brain system. ANN is a 
highly simplified model of a biological neural network when seen from a neurobiological 
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point of view. From mathematical point of view, they can be considered as a multivariate 
nonlinear modeling technique. The modeling philosophy is similar to a number of 
conventional statistical methods and they can be used to estimate functions from sample 
data as in the statistical technique. The major difference is that statistical approaches 
require guessing as to the functional dependency of outputs on inputs, whereas neural 
systems do not require articulation of any such physical or mathematical model (Agarwal 
et al 1994).  

2.1 ARCHITECTURE OF ANN 

 ANNs can be designed as either feedforward or recurrent networks. The 
feedforward ANN has no feedback loops i.e. the neurons are connected only to those in 
the next layer. Also, they have the property that the outputs can be expressed as a 
deterministic function of the inputs and so the whole network represents a multivariate 
nonlinear functional mapping (Bishop 1995). The neurons in the recurrent network are 
fully or partially connected and they have feedback connections also. The feedforward 
ANN which is commonly referred to as multilayer perceptron (MLP) is most widely used 
in practice. The most important attribute of the MLP is that it can learn a mapping of any 
complexity. The network learning is based on repeated presentations of the training 
samples. The trained network often produce surprising results and generalisations in 
applications where explicit derivation of mapping or discovery of relationship is almost 
impossible (Zurada 2003). In MLP, the output function of the system is determined by 
network structure, connection strengths and the processing performed at computing 
elements or nodes. The network can be trained to learn and to perform a particular task. 
The ultimate goal for network training is to generalise, i.e. to have the output of the 
network equal to approximate target values, given inputs that are not in the training set. 
Generalisation performance is by far the most important criterion for ANN evaluation, 
particularly when accurate prediction is the main objective.   
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Figure 1 A typical Multilayer Feedforward Neural Network 

 A typical three layer MLP is shown in Figure 1. The Multilayer feedforward 
neural network (FNN) can have more than one hidden layer. However, a single hidden 
layer has been proven to be capable of providing accurate approximation to any complex 
nonlinear function provided there are sufficient hidden nodes (Cybenko 1989; Hornik et al 
1989; Zhang et al 1998; Coulibaly et al 1999). It is the hidden nodes that allow the 
network to detect feature(s) in the data and to perform any nonlinear input-output 
mapping. There is no definite formula available to calculate the number of hidden nodes 
and usually it must be determined by trial and error method (Zhang 2007). The number of 
input and output nodes corresponds to the number of input and output variables in the 
problem. The number of nodes in the hidden layer and the type of algorithm used for 
training the network are problem-dependent and obtained by trial and error method. 

2.2  ALGORTHM FOR MODEL DEVELOPMENT 

 Coulibaly et al (1999) reported that more than 23 learning rules have been 
proposed for training the network, however, none of them can guarantee the global 
minimum solution. Therefore, efficient network training is a challenging part of network 
design. A critical examination of literature indicates that more than 90% of the 
experiments make use of FNN trained by standard backpropagation algorithm (BPA), 
which is basically a gradient-based optimisation technique, developed by Rumelhart et al 
(1986). Strictly the notion of backpropagation refers to the reverse mode for computing the 
error gradient for a multilayer FNN using the chain rule (Werbos 1974). The detailed 
description of MLP trained using BPA can be found in many publications (Zurada 2003; 
Fausett 1994).  
 Although BPA training has proved to be efficient in a number of applications, 
it has inherent limitations of gradient-based techniques such as slow convergence and local 
search nature. Though various modifications have been proposed to the BPA, conventional 
second-order nonlinear optimisation methods such as the conjugate-gradient, the 
Levenberg-Marquardt and the quasi-Newton algorithms are usually faster than any variant 
of the BPA (Masters 1995; Hagan et al 1996) and achieve significant improvement in the 
forecast accuracy. The Levenberg-Marquardt backpropagation algorithm (LMBPA) is 
designed specifically for minimising a sum of squared error (Bishop 1995) and to 
overcome the limitations in the standard BPA.   
 The LMBPA uses the approximate Hessian matrix (second derivative of the 
error function E) in the weight update procedure as follows: 

 )w(Z)IZZ(ww old
T1T

oldnew  
          (1) 

where I is the unit matrix, Z is the Jacobian matrix, A = ZZT
 is the Hessian matrix,   is 

the small scalar variable which controls the learning process and   is the residual error 

vector. When the scalar   is zero, LM method is just Newton’s method, using the 

approximate Hessian matrix and when   is large, this becomes gradient-descent with a 

small step size. In this latter case, the step length is determined by ,1  so that it is clear 

that, for sufficiently large values of  , the error will necessarily decrease since the 
equation (1) then generates a very small step in the direction of the negative gradient. In 
practice, a value must be chosen for   and this value should vary appropriately during the 
minimisation process    (Bishop 1995).  
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 Building a parsimonious model with a minimum number of input variables 
and parameters to achieve high predictive accuracy without underfitting or overfitting 
problems is very much essential (Zhang 2007). Too many neurons in the hidden layer lead 
to overfitting i.e. the training data will be well modeled, but the network will be modeling 
the noise in the data as well as the trends. A network with an insufficient number of hidden 
nodes will have difficulty in learning data. That is, both too small and too large networks 
have poor prediction performance. Therefore, the network will not generalise well on the 
testing data. A common heuristic approach to avoid overfitting is early stopping in which 
the available data are divided into training, validation and testing sets. This approach 
involves monitoring the generalisation error for validation set and stopping training when 
the minimum validation error is observed. However, some care is needed when to stop 
training, since the validation error surface may have a local minima or long flat regions 
preceding a steep drop-off (Gori and Tesi 1992). 
 The LMBPA is usually used with early stopping method in which the 
performance of the networks is compared by evaluating the error function using an 
independent validation set and the network having the smallest error with respect to the 
validation set is selected. In practice, the available data is severely limited and it may not 
be possible to keep part of the data as validation set for model comparison purpose. To 
overcome these limitations, Mackay (1992) proposed the use of Bayesian backpropagation 
neural networks (BBPNN). The BBPNN is able to deal with the overfitting issue without 
using the validation data set.  
 The Bayesian approach allows different models (e.g. networks with different 
number of hidden nodes) to be compared using only the training data and it provides an 
objective and principled framework for dealing with the issues of model complexity which 
avoids many of the problems which arise when using the maximum likelihood.  
 The Bayesian approach enables the optimal weight decay parameters to be  
automatically during training (Mackay 1992; Bishop 1995). It provides a combined 
approach for dealing with issues of model complexity and overfitting. For regression 
problems, error bars or confidence intervals can be assigned to the prediction generated by 
the network. 
 In the Bayesian frame work, the uncertainty in the weight space is assigned a 
probability distribution representing the degree of belief in the different values of the 
weight vector. This function is initially set to some prior distribution. Once the data has 
been observed, it can be converted to a posterior distribution through the use of Baye’s 
theorem. By maximising the posterior distribution over the weights w , the most probable 

parameter values MPw  can be obtained. Mackay (1992) has shown that maximising the 

posterior distribution corresponds to minimising the regularised error function. The 
posterior distribution is then used to evaluate the predictions of the trained network for 
new values of the input variables. The Bayesian approach allows the calculation of error 
bars on the network output, instead of just providing a single output. 
 The adjustment of the hyper parameters to their near-optimal values is carried 
out during training (Mackay 1992; Bishop 1995) and therefore eliminates the tedious and 
intensive task of searching for the optimal network for generalisation required by 
conventional backpropagation. The Bayesian framework essentially provides better 
generalisation and a statistical approach to deal with data uncertainty in comparison with 
the conventional backpropagation. The method has been successfully employed to analyse 
nonlinear multivariate problems (Bishop 1995). 

 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:434



 
3  EXAMPLES 

 Padmini et al (2008) used the Levenberg-Marquardt backpropagation 
algorithm (LMBPA) with Bayesian regularisation  for ANN model development to predict 
the ultimate bearing capacity of shallow foundations in cohesionless soils. The data used 
for calibrating and testing the ANN model were collected from literature, which include 
the load test data on small and large sized foundations, as well as the corresponding 
information regarding the footing and soil. The database has a total of 97 data sets, which 
consists the results of square, rectangular and strip footings of small and large sized 
foundations tested in sand beds of various densities. The data used are more evenly 
distributed (i.e. the number of data for large sized footings and smaller sized models are 
almost equal) that enhanced the performance of the ANN model.  
 Tokar and Johnson (1999) have indicated that the way the data are divided can 
have a significant impact on the results obtained. Like all the empirical models, ANNs are 
unable to extrapolate beyond the range of their training data (Shahin et al 2002). 
Consequently, in order to develop the best possible model, with the available data, all the 
patterns that are contained in the data need to be included in the training set. The 
representative set of patterns for the training phase has been selected in such a way that it 
contains all the patterns including the maximum and the minimum values of all the input 
and output data. The true generalisation ability of the model can be tested, when all of the 
patterns in the training set are also part of the testing set. Therefore, it is essential that the 
data used for training and testing represent the same population (Masters 1993, as reported 
by Shahin et al 2002). In order to achieve this, several random combinations of training 
and testing sets in various proportions viz. 60% and 40 %, 65% and 35%, 70 % and 30 %, 
75% and 25%, and 80% and 20% for training and testing respectively were tried in such a 
way that they represent the same population. On the basis of the above combinations, 
ANN models were developed. The variation of sum of squared error (SSE) with epochs  
for the five ANN models thus developed are shown in Figure 2. 

 

(a) 60% training and 40% testing 
 

 
(b) 65% training and 35% testing 
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(c) 70% training and 30% testing 

 

 
(d) 75% training and 25% testing 

 

 
 

(e) 80% training and 20% testing 

Figure 2 Epochs versus SSE for different partitioning of data 

 The MATLAB Toolbox for neural network was used for developing the above 
ANN models. Once training was successfully accomplished using the training set for each 
model, the performance of the models were evaluated on the test data. The performance of 
the developed ANN models for training and test data are indicated through performance 
indices namely Coefficient of correlation (r), Coefficient of efficiency (E), Root-mean-
square error (RMSE), Mean absolute error (MAE), Mean bias error (MBE) in Table 1. The 
ANN model developed with Bayesian regularisation was able to predict well for all the 
above combinations. Out of the five combinations, the data division having 80 % data for 
training and 20 % data for testing resulted in the best performance.  
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Table 1 Performance statistics of ANN for the prediction of ultimate bearing capacity 

for different partitioning of data 
 

(a) 60% (calibration) and 40% (testing) combination  
 

Performance 

Index 
Calibration (60%) Testing (40%) 

R 0.9874 0.9752 

E 0.9740 0.9500 

RMSE (kPa) 82.20 123.00 

MAE (kPa) 57.20 81.40 

MBE (kPa) -4.76 -14.63 

MARE (%) 20.71 21.71 

 
(b) 65% (calibration) and 35 % (testing) combination  

 

Performance 

Index 

Calibration 
(65%) 

Testing (35%) 

R 0.9871 0.9765 

E 0.9736 0.9582 

RMSE (kPa) 80.40 124.90 

MAE (kPa) 55.82 85.97 

MBE (kPa) -4.93 -10.38 

MARE (%) 20.48 22.20 

 
(c) 70% (calibration) and 30 % (testing) combination  

 

Performance 

Index 
Calibration (70%) Testing (30%) 

R 0.9842 0.9885 

E 0.9680 0.9760 

RMSE (kPa) 86.10 95.80 

MAE (kPa) 57.93 68.50 

MBE (kPa) -5.07 -7.49 

MARE (%) 19.54 20.03 
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(d) 75% (calibration) and 25 % (testing) combination  

 

Performance 

Index 

Calibration 
(75%) 

Testing (25%) 

R 0.9840 0.9880 

E 0.9680 0.9760 

RMSE (kPa) 85.30 99.90 

MAE (kPa) 58.00 69.00 

MBE (kPa) -5.06 -6.11 

MARE (%) 20.35 17.59 

 
(e) 80% (calibration) and 20 % (testing) combination  

 

Performance 

Index 

Calibration 
(80%) 

Testing (20%) 

R 0.9950 0.9920 

E 0.9890 0.9830 

RMSE (kPa) 52.90 77.20 

MAE (kPa) 39.98 57.02 

MBE (kPa) -1.78 -12.04 

MARE (%) 16.64 15.43 

 

 Padmini et al (2008) have tested the potential of Artificial Neural 
Networks trained using Levenberg-Marquardt algorithm in predicting the pull out capacity 
of circular anchors in cohesionless soils. In order to avoid over fitting, Bayesian 
regularisation technique has been applied. The goodness-of-fit statistics for the developed 
ANN model such as coefficient of correlation (R), the coefficient of efficiency (E), root- 
mean-square error (RMSE) between the actual and predicted values, the mean bias error 
(MBE), and mean absolute relative error (MARE) are 0.998, 0.997, 3.758 kN, 0.132 kN 
and 7.46 % respectively which indicates the superior performance of ANN in the 
prediction of pull out capacity of circular anchors in sand using the above algorithm. 

 
  Goh and Chua (2013) demonstrated the efficiency of the evolutionary 
Bayesian back-propagation (EBBP) to locate the minima and handle the uncertainties in 
data for the following complicated nonlinear problems  

1) Estimation of the Skin Friction capacity of driven piles in cohesive soils. 65 
data records of driven pile load tests taken from the literature were used to assess 
the skin friction , out of which 45 and 20 randomly selected patterns were used for 
training and testing.  The results indicated that the predictions using the EBBP 
were an improvement over those by the conventional method by Semple and 
Rigden method (1986). 

2) To model the Pile Skin Friction for drilled shafts.  
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A total number of 127 field load test data patterns were used, of which 85 patterns 
were randomly selected as the training data and 42 patterns as the  testing data. 
The regression equation given by Chen and Kulhawy (1994) was used for 
comparison. The predicted results were better than results obtained from the above 
regression equation particularly for training data.  

3) Retaining wall deflection 
The model was developed using 3844 training and 3081 testing data obtained from 
finite element method (FEM) analysis. 35 input parameters were used and wall 
deflection was the output. The EBBP predictions were in good agreement with the 
actual (FEM) all deflections.  

4 CONCLUSIONS 

 The limited data set constrained us not to allocate any dataset for validation. 
However this limitation was taken care by using Bayasian regularization. Though the data 
set is limited, the application of the LMBPA with Bayesian regularisation resulted in good 
prediction accuracy, which encourages to apply this approach to other problems in 
geotechnical engineering as well where we may have limited data available.  
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