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Abstract: 

In this paper  a technical review on  ECC processor is compatible with ISO/IEC 14443 is carried 

out. The Elliptic curve processor(ECC) is simulated in order to achieve optimized resources in the 

FPGA.  For the  point multiplication in the ECC processor special algorithm are developed and 

are simulated in order to reduce the airthmetic operation in the processor. In the proposed design 

focus has been on RFID passive tag design with the ECC to provide security to the tag ID with 

the constrained resources and digital base-band processor of the tag.  

 

1. Introduction 
The basic requirements of RFID applications are low-power and low-cost implementation with 

associated high data security. In order to satisfy this, public key cryptography is used. RFID 

passive tags are switched on by obtaining energy from transmitted radio frequency signals from 

by the reader. Passive tags operate with limited power supply. Due to this reason passive tags not 

able to adopt themselves to RSA cryptography, which is an energy-intensive algorithm. The next 

best option is ECC, presented by Koblitz [1]. The major advantage of ECC is that it provides 

equivalent level of security with smaller key sizes [2]. Comparison between the two is given in 

Table 1.1. 

Table 1.1 Key size comparison of ECC and RSA  

Key size (ECC) Key size (RSA) Ratio 

256 3972  1:12 

163 1024 1:6 

 

Scalar multiplication is the  most prominent operation in the elliptic curve  cryptosystems which 

is combination of field addition, field multiplication, field squaring and inversion operations 

coming under finite field arithmetic computations. The speed of the scalar point multiplication 

can be increased by proper selection of the coordinate system. This is presented in [3][4]. In 

literature many of the implementations for ECC processor in FPGA  have been presented [5][6] 

[7] [8] [9] 10] [11] [12] [13]  of which just a few are focused on low-end devices. The proposed 

implementation deals with speed, area and power based on FPGA technology [14].  

For resource limited RFID tags, an ECC algorithm has been proposed which can be adopted for 

both binary and prime fields based on projective coordinates. 

In this paper 1 section describes the introduction, section 2 about the Elliptic curve cryptography. 

In section 3  simulated results are presented and in section 4 conclusion is presented. 
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2. Elliptic curve cryptography (ECC) 

Elliptic curve cryptography has secured its own place when compared to other algorithms such as 

RSA because of the following reasons: 

 Provides equivalent protection level with smaller key sizes. 

 Require less bandwidth. 

 High speed.    

 Lower power consumption 

 High performance 

 Possible to implement on small areas.  

Definition: An elliptic curve ‘E’ on the field ‘F’ is formulized with the condition 

E: y� + b�xy + b�y = x� + b�x� + b�x + b�                                              . . . . . (2.1) 

 where b�,b�, b�, b�, b� ∈ F, as well as ∆≠ 0 represents the discriminant of the EC and it satisfies 

the condition, 

∆= D� �D� − 8D�
� − 27D�

� + 9D�D�D�                          . . . . . . . . . . . . . . . . . .(2.2) 

 D� = b� + 4b�              . . . . . . . . . . . . . . . . . .(2.3)                                                                                                                            

 D� = 2b� + b�b�           . . . . . . . . . . . . . . . . . .(2.4) 

D� = b�
� + 4b�          . . . . . . . . . . . . . . . . . .(2.5) 

D� = b�
�b� + 4b�b��b�b�b� + b�b�

� − b�
�             . . . . . . . . . . . . . . . . . .(2.6)         

Figure 2. 1 represent the schematic form for the two different equations of EC over real digits (R). 

 

Figure 2.1 EC over R for (a) ��: �� = �� − �   (b) ��: �� = �� +
�

�
� +

�

�
 

Figure 2.2 illustrates the structure of the faster scalar multiplication maneuvers. The basic feature 

of this process lies in its determination of the performance duration of an ECC protocol. The 

duration is split into three distinct levels for enabling point multiplication operation. These three 

levels are:   

a) Level 1: ECC Protocols 

b) Level 2: EC point arithmetic operations 

c) Level 3: EC finite field arithmetic operations 

As seen in the hierarchy, various operations required in elliptic curve scalar multiplication have 

detailing in different levels with ECC protocols at the topmost layer. 
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 Figure 2.2 Hierarchical collections of ECC operations 

Computations required for ECC are divided into levels. This is shown by the hierarchical 

arrangement representation of ECC and the interaction between the various levels involved in it.  

The three levels referred to have are: 

     i) Top most level: deals with the ECC protocols like ECDSA, ECDH, etc.  

    ii)  Second level: deals with elliptic curve scalar multiplication (SM), where SM is a 

combination of two other operations viz, point addition and point doubling.   

The last level or base level deals with the field operations of the EC. The performance of these 

operations is done over finite fields. The field maneuvers are field addition, field subtraction and 

field division/inversion 

2.1 Point multiplication 

In the EC cryptosystem, the multiplier is the fundamental unit required for the encryption and 

decryption algorithms. The speed of the multiplier is an important factor enabling speedy 

accomplishment of the EC cryptosystem. The multipliers that find most popular use in digital 

hardware are the Booth multiplier and array multiplier. Scalar point multiplication is the 

fundamental operation in EC Cryptosystems. The complexity of ECC and efficiency depend on 

elliptic curve discrete logarithm problem (ECDP). 

2.1.1 Finite field arithmetic 

In the case of EC over real numbers, the point calculation is known to be slow with no precision. 

This is why the definition of EC point computation is done over the finite fields for speedy 

calculation with accuracy. 
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Figure 2.3 Hierarchical Arrangement of the Finite field Systems 

 

Figure 2.3 shows the different classifications under the finite field operation. In cryptosystem the 

most popularly used finite fields are over GF (p) and GF (2m). 

2.2 EC operation on Prime field Fp  

Prime field elliptic curve Fp is defined as the set of points A (xA, yB) with x, y ∈ Fp  which satisfy 

the Weierstrass equation   

   
    
y  � = ax + b   (mod p)              . . . . . . . . . . . . . . . . . .(2.7) 

Here, a and b are the curve parameters and belongs to Fp. The discriminator equation is given by 

4a� + 27b� ≠ 0. p is the field parameter is the field size in bits.  

2.2.1 Point addition and point doubling on Fp: 

In the point addition process, the performance of addition is over two points on the elliptic curve 

with varied x coordinates. On the assumption of these two points as A (xA, yA) and B (xB, yB) on 

the EC (A≠ B), a line is drawn from point A to point B. The extension of this line results in the 

elliptic curve at third point - C, which then is replicated  in x direction for getting  the point C as 

shown in Figures 2.4 (a and b). They indicate resulting point of addition operation A+B = C. In 

event of A= -B, stretching a line from joining the points A and B gives a vertical line which is 

extended to meet point at infinity.  

Figure 2.5 point doubling operation is the repetitive method of adding point A to itself (i.e.,A +

A = 2A = C). This operation is carried out by drawing a tangential line to EC at the point A 

which meets the elliptic curve at the point C. By replicating the point at - C in x direction point C 

can be obtained.  

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:880



 
 

 

Figure 2.4 Point addition operation (a) � ≠ �, (b) A=B 

 EC Cryptosystem point addition rules are as follows: 

(i) ∞ + ∞ = 0 

(ii) (x�, y�)+∞ = (x�, y�) 

(iii) (x�, y�) + (x�, −y�) = ∞ 

(iv) (x�, y�) + (x�, y�) = (x�, y�) 

where: 

If x� ≠ x�, then the stripe through the point  A along with B gradient is given as,    

λ =
(�����)

(�����)
                                 . . . . . . . . . . . . . .  (2.8) 

 x� =  λ� − x� − x�                      . . . . . . . . . . . . . .  (2.9)                                        

 y� = λ(x� − x�) − y�                             .  . . . . . . . . . . . . .  (2.10)  

If  x� = x�, then λ =
����

����

���
 and the expression for �� and ��  are similar to equations 2.9  and 

2.10 respectively.  

 

Figure 2.5 Point doubling operation (C=2A) 
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2.3 EC over Binary field GF (2m)  

For EC operation the Weierstrass equation for finite binary field (p=2) is represented as: 

y� + xy = x� + ax� + b � mod p(x)�                          . . . . . . . . . . . . . . . . . .(2.11) 

where the coefficients a and b are the elements of GF(2m)  and   x and y are variables. 

2.3. 1 Point addition and point doubling over GF (2m): 

In the case of finite binary field GF (2m), where addition operation is just a simple bitwise XOR 

operation for polynomial arithmetic. For modular arithmetic, let A = (x�, y�) and B = (x�, y�)  

be two distinct points on the elliptic curve and C=A+B, where C = (x�, y�), xc and yc are given by 

x� =  λ� + λ + x� + x� + a                                                                       . . . . . . . . . . . . . . . (2.12)       

 y� = λ(x� + x�) + x� + y�                                                    . . . . . . . . . . . . . . . . (2.13)  

λ =
(�����)

(�����)
  represents the gradient of the stripe through the points A and B.   

If A=B then A+B=A+A=2A, the point doubling equation becomes 

 x� =  λ� + λ + a                              . . . . . . . . . . . . . (2.14) 

 y� = x�
� + (λ + 1) ∗ x�                                                                       . . . . . . . . . . . . . (2.15)    

 where, λ =
(�����)

��
  represents the tangent at point ‘P’. 

2.4  Coordinate systems in EC 

The coordinate systems that find largest use in ECs are affine coordinates and   projective 

coordinates. An operating affine coordinate is the usual x and y coordinate representation and 

projective coordinate only on the x coordinate. These systems have different features of the speed 

of point addition and point doubling. The affine coordinate system found employment basically in 

ECC. But there is a challenge here, which is, the inversion operation that requires performance in 

the case of point multiplication operation. This in turn needs a long duration for the completion of 

the computation. In the projective coordinate system need for inverse operation is dispensed with. 

Inverse /multiplication ratio memory and execution time are estimated. 

Table 1.2 Operations required for point addition and point doubling 

  Coordinate 

System 

Doubling Addition 

Affine 2squaring+2multiplication+

Invertion 

squaring +2 multiplication + Inversion 

Jacobian 6 squaring +4 

multiplication 

4 squaring +12 multiplication 

Modified Jacobian 4 squaring +4 

multiplication 

6 squaring +13 multiplication 

 

Table 1.2 represents the estimation of the operations for point addition and point doubling. Under 

the affine representation, point addition needs one squaring, two multiplication and an inversion 

operation while for doubling, two squaring, two multiplication and one inversion operation are 

required. In projective (Jacobian) representation, point addition needs four squaring and twelve 
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multiplication operations while for doubling, six squaring and four multiplication operation are 

required. In modified Jacobian representation point addition needs six squaring and thirteen 

multiplication operation while for doubling four squaring and four multiplication operation are 

required.  As a standard representation in most of the cases, it is necessary to convert the final 

result into an affine coordinate representation. So, this kind of mixed coordinate method gives 

satisfactory performance compared to other stand alone coordinate structures.  

In cryptography, most of the implementation is performed over binary field denoted by GF (2m) 

and prime fields under finite field denoted as GF (p).  One of the advantages of GF (2m) fields is 

the simple hardware requirement for the computation of the common operations such as addition 

and squaring. A Simple XOR operation is needed for performing addition and squaring in GF 

(2m). It is much simpler when compared to addition and squaring operations over GF (p) field. In 

the proposed work ECC related computations are performed over both fields. 

3. ECC Processor 

The proposed ECC processor over prime fields and performs scalar multiplication including point 

addition and point doubling based on affine coordinate representation. Figure 3.1 shows the 

proposed ECC dual field architecture, which consist of input/output buffers, data selector, control 

unit, register file and arithmetic unit and ECC scalar multiplier.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Architecture of the ECC processor GF (2163) 

Initially, the input data is fed into an input buffer and interfacing data is read-out through I/O 

using output buffer. The required ECC parameters are loaded into the buffer before commencing 

the computation. The control unit is responsible for controlling the associated operations. The 

control register helps in storing operation oriented and related control instructions. Main 

controller architecture decodes the instructions in the ECC arithmetic unit. Karatsuba Multiplier is 

adopted for both binary and prime fields for performing point addition and doubling. The final 

results are loaded into the register files. 

3.1 Architecture implementation  
ECC plays a key role in data security system for effective implementation of point multiplier unit 

for EC. The primitive computation procedure required for the implementation of EC operations 

are: scalar multiplication, point addition, point inversion and point division over GF (p) and GF 

(2m). The software implementation of ECC is performed in the proposed scheme. 
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3.2 ECC Algorithm 

The effectiveness of EC algorithm is based on various criteria such as selection of the appropriate 

field, coordinate system representation, EC arithmetic calculations etc. Elliptic curve based point 

addition and point doubling operations over finite prime field are represented using projective 

coordinate and the affine coordinate system, respectively. PM operation is performed in terms of 

mixed coordinate format. The estimation of PM is an essential function in ECC and  many 

efficient algorithms are reported for PM.  

3.2.1 Scalar Multiplication 

Point scalar multiplication in ECC scheme is defined as: 

Q = zA= A+A+…+A (k times)……………………………(3.1) 

Here ‘A’ refers to a point on the elliptic curve and ‘z’ denotes random integer. Point addition and 

point doubling are the most prominent operations under point scalar multiplication. 

The algorithms involved in scalar multiplication are as follows: 

Algorithm 1.3: Scalar Multiplication 

Step No:1 Input: z = (zn-1,zn-2-------z1,z0), A; 

Step No:2 Output = [z] A; 

Step No:3 do 

Step No:4 R0 = 0; R1 = A; 

Step No:5 For i=  n-1 down to  0 

Step No:6 b = ki ;R1-b  = R1-b  + Rb; 

Step No:7 Rb = 2Rb; 

Step No:8 end for; 

Step No:9 return R0 

 

Algorithm 1.4: Point Addition over Binary field 

Step No:1 Inputs: A(x2, y2), Q(X4, Y4, Z4).   

Outputs: R(X3,Y3,Z3) 

Step No:2 A=Y4+y2Z4
2; 

Step No:3 B=X4+x2Z4; 

Step No:4 C=BZ4; 

Step No:5 Z3=CC; 

Step No:6 D=x2Z3; 

Step No:7 E=A+BB+aC; 

Step No:8 X3=AA+CE; 

Step No:9 I=D+X3; 

Step No:10 J=AC+Z3; 

Step No:11 F=IJ; 

Step No:12 K=Z3Z3; 

Step No:13 Y3= F+x2K+y2K 

Algorithm 1.5: Point doubling 

Step No:1 Inputs: (x1, y1, z1); 

Step No:2 Outputs:(x4, y4, z4); 

Step No:3 z4 =z1
2x1

2, 

Step No:4 x4=x1
4+bz1

4, 

Step No:5 y4=(y1
2+az4+bz1

4)x4+z4 
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Algorithm 1.5: Point addition over Prime field 

Step No:1 Inputs: Q=(X4,Y4,Z4), A=(x2,y2) 

Step No:2 Output: R=(X3,Y3,Z3)=P+Q; 

Step No:3 A=X4; 

Step No:4 B=x2*Z1
2; 

Step No:5 C=A–B; 

Step No:6 D=Y1; 

Step No:7 E=y2*Z1
3; 

Step No:8 F=D–E; 

Step No:9 G=A+B; 

Step No:10 H=D+E; 

Step No:11 Z3=Z1*C; 

Step No:12 X3=F2–G*C2; 

Step No:13 I=G*C2–2*X3; 

Step No:14 Y3=(I*F–H*C2)/2; 

Algorithm 1.6: Point doubling over Prime field 

Step No:1 Inputs: P = (X1,Y1,Z1),a; 

Step No:2 Output: Q = (X4,Y4,Z4) =2P; 

Step No:3 A=3*X1
2+a*Z1

4; 

Step No:4 B=4*X1*Y1
2; 

Step No:5 X4=A2–2*B; 

Step No:6 Z4=2*Y1*Z1; 

  Step No:7 C=8*Y1
4; 

  Step No:8 Y4=A*(B–X4)–C; 

 

4. Results 

The results of the proposed work has been implemented for 163-bit ECC processor in transmitter 

section in which tag number is secured. The results are given below. 

4.1 ECC processor 

ECC processor has been proposed for both binary and prime fileds for 163-bits. In the proposed 

design to select any particular field, “sel_field” control signal is used. When sel_field is set to ‘1’ 

binary filed is selected else prime field will be selected. The ECC processor clock frequency of 

100MHz is generated from FPGA board. Reset option initiallizes all internal registers and 

memories. Based on the field selection the respective keys generated from ECC are Out1, Out2 

and Out3. The ECC processor block and results are shown in Figure 4.1 and 4.2 below: 
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Figure 4.1 ECC processor block 

Block name:ECC Procesor 

Function:To generate secrete keys poins on the ECC curve 

Input: Only sel_field to select field, Inputs are f(x,y,z) and 163 bits constant 

Output: 3 different key generation 

 

Figure 4.2 Results of ECC Processor in GF(2163) for prime and binary fileds 
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5   Conclusion 
In this paper a technical review on Elliptic curvres processor are presented and simulated for 

RFID applications. In order to achieve optimized resources in Field FPGA for ECC, point 

multiplication are adopted. The proposed design focused on RFID passive tag design with the 

ECC to provide security to the tag ID with the constrained resources.  
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