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Abstract: Multiplication is one of the basic 
element in arithmetic unit, where decimal 
multiplication(X × Y) is a complex operation, in 
which intermediate partial products (IPPs) are 
commonly selected from a set of pre-computed 
radix-10 X multiples. In this paper, despite 
generation of 17 IPPs, for 16-digit operands, we 
manage to start the partial product reduction (PPR) 
with 16 IPPs that enhance the VLSI regularity. In 
some works only [0, 5 ]× X via recoding digits of Y 
to one-hot representation of signed digits in [− 5 , 5 ] 
is used. This reduces the selection logic at the cost of 
one extra IPP. We save 75% of negating xors via 
representing pre-computed multiples by sign-
magnitude signed-digit (SMSD) encoding. As such, 
a VLSI implementation of 16 × 16-digit parallel 
decimal multiplier is synthesized, where evaluations 
show some performance improvement over 
previous relevant designs. 

Key words: Radix-10 multiplier, redundant 

representation, sign-magnitude signed digits (SMSDs), 

VLSI design. 

I.INTRODUCTION 

 Decimal computer arithmetic is preferred in 

decimal data processing environments such as 

scientific, commercial, financial, internet-based 

applications in monetary, web-based, and human 

interactive applications. Ever growing needs for 

processing power, required by applications with 

intensive decimal arithmetic, cannot be met by 

conventional slow software simulated decimal 

arithmetic units. However, their hardware counterparts 

as an integral part of recently commercialized general 

purpose processors are gaining importance. Binary-

coded decimal (BCD)  

 

encoding of decimal digits has conventionally 

dominated decimal arithmetic algorithms, whether 

realized by hardware or in software.  

The research for hardware realization of 

decimal arithmetic is not matured yet and there are 

rooms for improvements in hardware algorithms and 

designs. For example, the state-of-the-art BCD 

multipliers, for computing X  Y, use iterative 

multiplication algorithms, where the partial products 

(i.e. the product of one BCD digit of the multiplier Y 

times the multi-BCD-digit multiplicand X) are 

generated one at a time and added to the previously 

accumulated result. Each partial product may be 

directly generated as one BCD number in [0, 9]  X, or 

may be composed of few easy multiples of the 

multiplicand (e.g. 7X ¼ 4X þ 2X þ X). The latter 

approach tends to increase the depth (measured by the 

maximum number of equally weighted BCD digits) of 

partial product tree per each BCD digit of multiplier, 

which in general leads to slower partial product 

accumulation. But, by using possibly fast and low-cost 

BCD digit by BCD-digit multipliers, the former 

approach may lead to less costly BCD multipliers.  

Erle et al. have enumerated three reasons for 

using decimal digit-by-digit multipliers for partial 

product generation, which leads to less number of 

cycles, less wiring and no need for registers to store 

multiples of the multiplicand. With the rapid advances 

in VLSI technology, semi(fully)-parallel BCD 

multipliers will soon be attractive, where more than 

one (all) partial product(s) are generated at once and 

accumulated in parallel. An integral building block of a 

BCD multiplier, whether realizing a sequential, semi- 

or fully parallel multiplication algorithm, can be the 

BCD-digit multiplier. Alternative approaches are based 

on either slow accumulation of easy multiples, or 

costly retrieval of product of BCD digits from look-up 

tables. 
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II. BACKGROUND 

Dynamic negation of precomputed X 

multiples reduces their selection cost at the penalty of 

one XOR gate per each bit of the selected positive 

multiple. This negation cost is replicated n times for 

parallel n×n multiplication. Moreover, the n inserted 1s 

for 10’s complementation in and n× (n+1) 1s for 

digitwise two’s complementation in have a negative 

impact on area and power saving. The same is true for 

the correction constant, and more complex recoding 

due to zero handling, for [0, 15] partial products. One 

way to save these costs, as we do in Section III, is to 

generate the SD precomputed Xmultiples with sign 

magnitude format, so as to reduce the XOR gates to 

one per digit (roughly 75% savings in the number of 

negating XOR gates) and remove the aforementioned 

negative impacts. However, besides slowing down the 

PPG to some extent (e.g., in comparison with radix-5 

implementation of [6]), new problems are introduced in 

PPR, which are explained and solved in the next 

section, where we also reduce the depth of IPP matrix 

to n = 16, effectively prior to termination of PPG. 

 

III.EXISTING SYSTEM 

Fast radix-10 multiplication, in particular, can 

be achieved via parallel partial product generation 

(PPG) and partial product reduction (PPR), which is, 

however, highly area consuming in VLSI 

implementations. Therefore, it is desired to lower the 

silicon cost, while keeping the high speed of parallel 

realization. Let P = X × Y represent an n × n decimal 

multiplication, where multiplicand X, multiplier Y , 

and product P are normal radix-10 numbers with digits 

in [0, 9]. Such digits are commonly represented via 

binary-coded decimal (BCD) encoding. However, 

intermediate partial products (IPPs) arerepresented via 

a diversity of often redundant decimal digit sets. 

The choice of alternative IPP representations 

is influential on the PPG, which is of particular 

importance in decimal multiplication from two points 

of view: one is fast and low cost generation of IPPs and 

the other is its impact on representation of IPPs, which 

is influential on PPR efficiency. Straightforward PPG 

via BCD digit-by-digit multiplication [8], [9] is slow, 

expensive, and leads to n double-BCD IPPs for n×n 

multiplication (i.e., 2n BCD numbers to be added).  

  

 
 

 
Fig 1: Radix-10 multiplier. 

  

.However, the work of  recodes both the 

multiplier and multiplicand to signmagnitude signed 

digit (SMSD) representation and uses a more efficient 

3-b by 3-b PPG. Nevertheless, following a long 

standing practice, most PPG schemes use precomputed 

multiples of multiplicand X (or X multiples). 

Precomputation of the complete set0, 1, . . . 9} × X, as 

normal BCD numbers, and the subsequent selection are 

also slow and costly. A common remedial technique is 

to use a smaller less costly set that can be achieved via 

fast carry-free manipulation (e.g., 0, 1, 2, 4, 5} × X) at 

the cost of doubling the count of BCD numbers to be 

added in PPR; that is, n double-BCD IPPs are 

generated, such as 3X = (2X, X), 7X = (5X, 2X), or 9X 

= (5X, 4X).  

IV.PROPOSED SYSTEM 
 

 We aim to take advantage of [−5, 5] SMSD 

recoding of multiplier and dynamic negation of X 

multiples, while reducing the number of XOR gates 

via generating [−6, 6] SMSD pre-computed X 

multiples (i.e., just one XOR gate per 4-b digit). Other 

contributions of this paper are highlighted below. 
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Fig. 2:  Block diagram of the proposed multiplier. 

 

 1) Starting the PPR with 16 Partial Products: An 

especial on the fly augmentation of two middle SMSD 

digits leads to reducing the depth of partial product 

matrix by 1, such that the PPR starts with 16 operands 

right at the end of PPG, with no delay penalty for the 

latter.  

2) Special 4-in-1 SMSD Adder with TCSD Sum: To 

avoid the challenging addition of SMSD IPPs, we 

design a novel carry-free adder that represents the 

sum of two [−6, 6] SMSD operands in [−7, 7] two’s 

complement signed-digit (TCSD) format, where one 

unified adder is utilized for all the four possible sign 

combinations.  

3) Improved TCSD Addition: The rest of the 

reduction process uses special TCSD adders that are 

actually an improved version of the fast TCSD adder. 

Such 2:1 reduction promotes the VLSI regularity of 

the PPR circuit, especially for n = 16. 

4) Augmenting the Final Redundant to Non redundant 

Conversion with the Last PPR Level: The last PPR 

level would normally lead to TCSD product, which 

should be converted to BCD. However, to gain more 

speed and reduce costs, we device a special hybrid 

decimal adder with two TCSD inputs and a BCD 

output. 

 

 
Fig. 3: Normal organization of IPPs. 

 

 
Fig. 4: Required circuit for (17 →16) depth reduction. 

Partial Product Reduction 

The overall PPR for n = 16 is illustrated by Fig. 5, 

where a bar, triangle, square, and diamond represent a 

BCD, [−6, 6] SMSD, [−7, 7] TCSD, and binary signed 

digit (BSD), respectively. The choice of SMSD 

representation for the firstlevel IPPs, while facilitating 

the PPG, bears no extra complexity for PPR, since all 

reduction levels use TCSD adders, except for the first 

one that requires a special SMSD+SMSD-to-TCSD 

adder. 

 

 
Fig. 5: Overall view of 16 × 16 digit multiplier. 

 

 

Special 4-in-1 SMSD Adder: 

 A digit slice of the aforementioned SMSD+SMSD-to-

TCSD adder for four different cases corresponding to 

all possible combinations of the input signs is depicted 

by Fig. 6(a)–(d) in dot-notation representation. The 
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black and white dots represent posibits and negabits. 

(A posibit is a normal bit whose arithmetic value 

equals its logical status, and the arithmetic value of a 

negabit with logical status x equals x − 1 [24].)  

 The sum of two [−6, 6] SMSD digits (e.g., P = sp 

p2 p1 p0 and Q = sqq2q1q0), and a signed carry in 

(e.g., Cin) is produced as one [−7, 7] TCSD digit (e.g., 

S = s3s2s1s0), and a signed carry out (e.g., Cout). This 

is a two-stage process. In the stage I, the sign bits are 

applied to the magnitudes, such that a negative sign 

changes the polarity of magnitude posibits to negabits 

and inverts their logical states. Subsequently, in the 

same stage, the bit collection U is decomposed, and the 

bit collection V is recoded. In the second stage, 

however, as will be explained shortly, only one 4-b 

adder takes care of all the four cases, which explains 

the rationale for designation of the adder. 

 
Fig. 6: Digit slice of the 4-in-1 SMSD+SMSD → 

TCSD adder. 

 
 

Fig. 7: TCSD adder. 

 To speed up the latter two steps (i.e., 2:1 

reduction and TCSD-to-BCD conversion), the actual 

BCD product generation of Fig. 5 uses a more efficient 

method which is described below. The final 2:1 

reduction level that is required for positions 8 to 22 and 

the subsequent TCSD-to-BCD conversion can be 

actually augmented as a TCSD + TCSD addition with 

BCD result. 

EXTENSION: 

This array height reduction method can also be 

implemented to radix-64 algo128-bit multiplication. 

After the generation of the partial product bit array, the 

reduction (multi operand addition) from a maximum 

height of 33 (for n = 128) to 2 is performed. Here we 

are going to generate 32 PP by reducing array height 

by one. 

V.RESULTS 

The Verilog HDL Modules have successfully 

simulated andsynthesized using Xilinxise13.2. 

 

PROPOSED . RESULT: 

SIMULATION  

 
RTL SCHEMATIC: 

 
TECHNOLOGY SCHEMATIC 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:857



 
 

 

DESIGN SUMMARY 

 
TIMING REPORT: 

 

EXTENSION RESULTS: 

SIMULATION : 
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TIMING REPORT: 

 

 

VI. CONCLUSION 
We propose a parallel 16 × 16 radix-10 BCD 

multiplier, where 17 partial products are generated with 

[−6, 6] SMSD representation. Some innovations of this 

paper and use of previous techniques, as listed below, 

have led to marginal 1.5% less area consumption and 

10% less power dissipation, at 4.8-ns latency, with 

respect to the fastest previous work [4]. The least 

possible delay for the latter is 4.8 ns, while the 

proposed design leads the synthesis tool to meet the 

4.4-ns time constraint (i.e., 9% faster). In other words, 

the advantage is that the proposed design can operate in 

9% higher frequency and dissipate up to 13% less 

power with no claim in area improvement. 

 

REFERENCES 
 

[1] M. F. Cowlishaw, “Decimal floating-point: Algorism for 

computers,” in Proc. 16th IEEE Symp. Comput. Arithmetic, Jun. 

2003, pp. 104–111. 

 [2] T. Lang and A. Nannarelli, “A radix-10 combinational 

multiplier,” in Proc. 40th Asilomar Conf. Signals, Syst., Comput., 

Oct./Nov. 2006, pp. 313–317.  

[3] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A high-frequency 

decimal multiplier,” in Proc. IEEE Int. Conf. Comput. Design 

(ICCD), Oct. 2004, pp. 26–29. 

 [4] A. Vazquez, E. Antelo, and J. D. Bruguera, “Fast radix-10 

multiplication using redundant BCD codes,” IEEE Trans. Comput., 

vol. 63, no. 8, pp. 1902–1914, Aug. 2014.  

[5] S. Gorgin and G. Jaberipur, “Fully redundant decimal 

arithmetic,” in Proc. 19th IEEE Symp.Comput. Arithmetic, Jun. 

2009, pp. 145–152. 

 [6] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of 

highperformance parallel decimal multipliers,” IEEE Trans. 

Comput., vol. 59, no. 5, pp. 679–693, May 2010. 

[7] L. Han and S.-B.Ko, “High-speed parallel decimal multiplication 

with redundant internal encodings,” IEEE Trans. Comput., vol. 62, 

no. 5, pp. 956–968, May 2013, doi: 10.1109/TC.2012.35.  

[8] G. Jaberipur and A. Kaivani, “Binary-coded decimal digit 

multipliers,” IET Comput.Digit.Techn., vol. 1, no. 4, pp. 377–381, 

2007.  

[9] R. K. James, T. K. Shahana, K. P. Jacob, and S. Sasi, “Decimal 

multiplication using compact BCD multiplier,” in Proc. Int. Conf. 

Electron. Design, 2008, pp. 1–6. 

[10] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal 

multiplication with efficient partial product generation,” in Proc. 17th 

IEEE Symp.Comput. Arithmetic, Jun. 2005, pp. 21–28.  

[11] R. K. Richards, Arithmetic Operations in Digital Computers. 

New York, NY, USA: Van Nostrand, 1955. 

 [12] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 

754-2008, IEEE Standards Committee, 2008, doi: 

10.1109/IEEESTD. 2008.4610935.  

[13] A. Svoboda, “Decimal adder with signed digit arithmetic,” IEEE 

Trans. Comput., vol. C-18, no. 3, pp. 212–215, Mar. 1969. 

[14] B. J. Hickmann, A. Krioukov, M. Schulte, and M. Erle, “A 

parallel IEEE P754 decimal floating-point multiplier,” in Proc. IEEE 

25th Int. Conf. Comput. Design (ICCD), Oct. 2007, pp. 296–303. 

[15] R. Raafat et al., “A decimal fully parallel and pipelined floating 

point multiplier,” in Proc. 42th Asilomar Conf. Signals, Syst., 

Comput., Oct. 2008, pp. 1800–1804. 

 [16] M. A. Erle, B. J. Hickmann, and M. J. Schulte, “Decimal 

floatingpoint multiplication,” IEEE Trans. Comput., vol. 58, no. 7, 

pp. 902–916, Jul. 2009. 

[17] C. Tsen, S. González-Navarro, M. Schulte, B. J. Hickmann, and 
K. Compton, “A combined decimal and binary floating-point 
multiplier,” 
inProc. 20th IEEE Int. Conf. Appl.-Specific Syst., Archit. 
Process. (ASAP), Jul. 2009, pp. 8–15. 
[18] C. Minchola and G. Sutter, “A FPGA IEEE-754-2008 
decimal64 
floating-point multiplier,” in Proc. Int. Conf. Reconfigurable 
Comput. 
FPGAs (ReConFig), Dec. 2009, pp. 59–64. 

Student Details : 

 

 

 

 

 

Name: 

BULA.RANADEEP 

Mr.Bula.RanadeepwasborninKakinada,APonJ

une24,1995.Hegraduatedfromthe"pragatiengineeringco

llege"affiliatedfromJawaharlalNehruTechnologicalUni

versity,Kakinada.HisspecialfieldsofinterestincludedEm

bededsystems&VLSI.PresentlyHeisstudyingM.TechinP

ragatiEngineeringcollege,Surampalem.Eastgodavari. 

 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:859



Faculty Details: 

 

 

 

 

 

Name: P.Krishna Chaitanya 

Mr. P.Krishna Chaitanya  was born Guntur,AP. He 

graduated from the Jawaharlal Nehru Technological 

University,Hyderabad.Presently He is working as a 

Asst Prof in Pragati Engineering College. So far he is 

having 8 Years of Teaching Experience in various 

reputed engineering colleges.  His special fields of 

interest included Antennas, VLSI and Embedded 

Systems 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:860


