
The Hungry Dog: An Efficient Algorithm for

Searching from 2-D Plot.

Mohammad Shabaz*, Amit Sharma1, Gourav Ajmera2

*Apex Institute of Technology, Chandigarh University, Mohali.

1Apex Institute of Technology, Chandigarh University, Mohali.

2Apex Institute of Technology, Chandigarh University, Mohali.

*mohdshabaze6819@cumail.in ,1 khandelwal.amit.010@gmail.com ,
2goravajmera@gmail.com

Abstract

Searching is one of the required operation

while implementing any data-structure or

algorithm especially when we are talking

about Sorting and Merging, without

searching these operations are not possible.

There are different searching algorithms

such as linear search, binary search,

sequential search, Grover’s Search etc.

which are used to search element from 1-D

Plot. But when we are talking about 2-D

Plot, Searching becomes quite complex as

it takes at least O(n2) of Time complexity.

The Hungry Dog is basically a problem in

which a dog is standing inside any cell of

2-D Plot and its food lies inside some

other cell but the dog has a capability to

smell to its adjacent cells and has to reach

to its food by jumping to other cells. But

there are certain conditions that the dog

cannot jump to already traversed cell and

the dog has to take minimum number of

jumps. In this paper we have designed an

algorithms associated with a formula

which enables the dog to reach to its food

by taking minimum number of jumps. This

Algorithm also helps us to solve the

travelling salesman problem by reducing

its moves.

The Hungry Dog results to the discovery

of novel searching algorithm for 2-D Plot.

Keywords: Linear, Binary, Sequential,

Breadth First Search, Complexity

Analysis, Hungry Dog.

Introduction

The Hungry Dog Algorithm finds the

minimal path to reach to the destination.

The Source and destination has already

been assigned to it. Let us look at some of

the previous searching techniques which

are used to search required item from 1-D

and 2-D Plot.

Linear Search: Linear search is the most

basic technique to search a particular item

in 1-D Plot. This technique is mainly used

when the data is unsorted and the data-set

is small. In this technique, we firstly set

the item which we want to search and

compare this item linearly with all the

other items which are lying in the plot.

When the set item matches with any of the

lying item, the item is found in the plot [1]

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1133

 Algorithm 1 shows linear search.

 Algorithm 1: Linear search

1. int a[1...n], search;

2. for i:=1 to n do{

3. if(a[i]= = search){

4. search found;

5. }

6. End if

7. }

8. End for

The time complexity of Linear search in

worst and average case would be O(n)

while in best case it is O(1).

Binary Search: This algorithm works on

the list in which the records of the list are

sorted. Getting the middle element of the

list and comparing it with the searched

element to find the position of the searched

element. If the searched element is found,

write its position and if not found then

return nothing. While performing this

complete procedure, every time the list is

divided into two parts.

i.e. middle=(First + Last) / 2.

Where, First=0, Last=size of list -1.

Algorithm 2 shows Binary Search.

Algorithm 2: Binary Search

1. Assuming First = 0, Last = Size-1,

Searched element.

2. If Last < First, then return.

3. Calculate middle.

4. If middle element equals searched

element, then stop.

5. If the searched element is low, then

6. First = searched element + 1.

7. else

8. Last = searched element - 1.

9. Go back to step 2.

The time complexity of Binary Search in
best, worst and average case would be
O(log n).

Sequential Search: Sequential Search
algorithm can be implemented on an
unsorted list. Starting from the beginning
of the list till end, the aim is find the
desired search element. A flag variable
initialized to 0 is declared initially and
whenever the searched element is found
anywhere in the list, this flag returns the
value 1.
Algorithm 3 shows Sequential Search.

Algorithm 3: Sequential Search.
1. Put flag to 0

2. Put First to 0

3. While (First<=N) and (flag = = 0){

4. If (List [First] = =Searched Element)

5. flag = true

6. else

7. First=First+1

8. }

9. If (flag = =0)

10. Searched Element is not present in

List.

The time complexity of Sequential Search
in best case is O(1), but in worst and
average case would be O(n).

Breadth First Search: Initialize all the
vertex of the tree or graph to 0. Starting
from the root or first vertex of a tree or
graph and comparing its value with the
searched element, if the searched element
is found, then return the value, else
similarly traverse till the last vertex and
mark the entire traversed vertex with 1,
which shows that the vertex has already
tackled or traversed [2].
Algorithm 4 shows Breadth First Search.

Algorithm 4: Breadth First Search.

1. Let the starting vertex be X, at

Level 0.

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1134

2. Find all vertices that are reachable

from X, i.e., only those which are

one edge away from X.

3. Mark these reachable vertices to be

at Level 1.

4. Those vertices which do not have

their assigned Level T set some

value to them.

5. Mark the root vertex of the

currently targeted vertex.

6. Find all those vertices which are a

one edge away from those vertices

which are at Level 1. These new

class of vertices will be at Level 2.

7. Repeat the process till all the

vertices are targeted.

The time complexity of Breadth First

Search is O(V + E) where V denotes

vertex and E denotes Edge. In worst case

analysis E = O(V2), then the complexity

becomes O(V2).

Depth First Search: Avoiding cycle in a

graph, this searching algorithm traverse in

the whole graph and mark the visited

vertex until all the vertices are tackled.

 Algorithm 5 shows Depth First Search.

Algorithm 5: Depth First Search

1. Initialize by setting any one of the

vertices of graph/tree onto stack.

2. Add the top element of the stack to

already visited list.

3. Establish the list of that vertex

which are one edge away from

visited vertex and add them to the

visited list onto stack.

4. Repeat the steps 2 and 3 until the

stack underflow occurs.

The time complexity of Depth First Search

is O(V + E) where V denotes Vertex and E

denotes Edge.

Literature Review and Related

Work

Akanmu T. A., Olabiyisi S. O., Omidiora

E. O. ,Oyeleye C. A., Mabayoje M.A. and

Babatunde A. O. [3]: In this paper the

authors finds the software complexity

measurement after performing a detail

study on breadth first search and depth-

first search algorithms.

Both these algorithms were measured on

Program Volume (V), the Program Effort

(E), the Program Difficulty (D) and the

Cyclomatic Number V(G) parameters

using different programming languages.

Finding the objectivity between execution

and performance of these algorithms, helps

in quick and reliable decision making.

Muhammad Usman , Zaman Bajwa and

Mudassar Afzal [4]: In this paper the

authors have focus on the performance of

different searching algorithms using C#

programming language such as linear

search, Binary search and brute force

search and measured them in term of time

complexity i.e. execution time of searching

algorithm. The authors found that linear

search is better in time complexity and

brute force search is better in finding all

search patterns.

Najma Sultana, Smita Paira, Sourabh

Chandra and Sk Safikul Alam [5]: The

authors evaluate the better searching

algorithm after implementing them on

sorted and unsorted list or record. The

conclusion is that the particular searching

algorithms works on particular nature of

data, i.e. for sorted data Binary search,

Jump search and interpolation search

works better where as for unsorted nature

of data, Linear Search performs better.

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1135

Er. Mohammad Shabaz and Er. Neha

Kumari [6]: Searching some pattern from

string is another application of Searching.

The authors, in this paper compare

different searching algorithms and create a

new one which has better execution time

as compared to others.

Implementation and Methodology

of “The Hungry Dog”

Algorithm 6 Shows “The Hungry Dog”

Algorithm 6: The Hungry Dog

1. Let us take a 2-D matrix of size

n*n.

2. Assume that the dog is at corner of

matrix which is starting point of

dog.

3. On every position in matrix, dog

will check every adjacent cell from

its position and if Bone found,

return and give result.

4. Dog moves diagonally in given

matrix from one end to opposite

end in which every jump is from

one diagonal position to adjacent

diagonal position.

5. Two Ends of the Matrix are

formed, High End and the Low

End.

6. For High End:

Row High Jump- make a jump in

row skipping two columns from

end position and start traversing

diagonally in (row*row)matrix

from one end to opposite end.

Column High Jump-make a jump

in column skipping two row from

end position and start traversing

diagonally in (1-column)*(1-

column) matrix from one end to

opposite end.

7. For Low End:

Column High Jump- make a jump

in column skipping two row from

end position and start traversing

diagonally in (1-column)*(1-

column) matrix from one end to

opposite end.

Row High Jump-- make a jump in

row skipping two columns from

end position and start traversing

diagonally in (row*row)matrix

from one end to opposite end.

In case of n%4= =2 then check another

end diagonal elements.

Results

The results showed in Table 1 shows the

comparison of Hungry Dog Algorithm

with Linear Search, Sequential Search and

Breadth First Search.

MAT
8*8

linear Sequential Bfs Hungry

00 2 1 7 18
01 3 2 10 15
02 4 3 9 15
12 13 11 8 14
23 23 20 8 5
24 24 21 8 5
33 32 28 7 3
77 72 64 7 11
61 50 50 2 1
07 8 8 21 7

Table 1: Shows the comparison among

different searching algorithm on 8*8

Matrix on basis of their number of

iterations.

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1136

Conclusion

The Hungry Dog is basically a problem in

which a dog is standing inside any cell of

2-D Plot and its food lies inside some

other cell but the dog has a capability to

smell to its adjacent cells and has to reach

to its food by jumping to other cells. The

Hungry Dog algorithm is compared to

different searching algorithms and we

come to a conclusion that this algorithm

performs better as compared to Linear

Search, Sequential Search and Breadth

First Search in average and worst case

Scenario.

Acknowledgment

We thereby whole-heartedly acknowledge

the people who have been connected to

us especially Mr. Mohd. Rafiq, Mr.

Vinayak Khajuria, Mr. Naresh

Khandelwal, Mr. Omprakash Sharma, Mr.

Vinod Ajmera.

References

[1] Cormen, T. H., Leiserson, C. E., and
Rivest, R. L. (1990). Introduction to
algorithms. Massachussets: MIT
Press; New York: McGraw-Hill.

[2] Ellis Horowitz and Sartaj Sahni,
“Fundamentals of Computer
Algorithms”, Computer Science press,
1978.

[3] Akanmu T. A., Olabiyisi S. O., and et.
al, “Comparative Study of
Complexities of Breadth-First Search
and Depth-First Search Algorithms
Using Software Complexity
Measures”, Proceedings of the World
Congress on Engineering (WCE’10),
London, 30 June-2 July 2010, 203-
208.

[4] Muhammad usman , Zaman bajwa and
Mudassar afzal, “Performance

Analysis of Searching Algorithms in
C# ”, International Journal for
Research in Applied Science &
Engineering Technology (IJRASET),
Volume 2 Issue XII, December 2014.

[5] Najma Sultana, Smita Paira, Sourabh
Chandra and Sk Safikul Alam, “A
brief study and analysis of different
searching algorithms”, IEEE
International Conference on Electrical,
Computer and Communication
Technologies, 2017.

[6] Er. Mohammad Shabaz and Er. Neha
Kumari, “Advance-Rabin Karp
Algorithm for String Matching”,
International Journal of Current
Research Vol. 9, Issue, 09, pp.57572-
57574, September, 2017.

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1137

