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ABSTRACT 

A general complex matrix–variate probability model is introduced here, which covers almost all complex 

matrix-variate densities used in multivariate statistical analysis. Through the new density introduced here, a 

pathway is created to go from matrix-variate type-1 beta to matrix-variate type-2 beta to matrix-variate gamma 

to matrix-variate Gaussian or normal densities in complex case. Connections to the distributions of quadratic 

forms and generalized quadratic forms in the new matrix are established. The present day analysis of these 

problems is mainly confined to Gaussian random variables. Thus, through the new distribution, all these 

theories are extended. Connections to certain geometrical probability problems, such as the distribution of the 

volume of a random paralleltope in Euclidean space, is also established. 

 

KEYWORDS: Function of matrix arguments; t, F, Cauchy distributions; Hermitian positive definite; 

Quadratic forms. 

 

1) INTRODUCTION:  

     Function of matrix argument in the complex case: We consider real valued scalar function of a 

single matrix argument of the type 

~
Z   = 

~
X  + i

~
Y  where 

~
X  and 

~
Y  are p x p matrices with real 

elements and 
1i 

 as well as scalar functions of many matrices j
Z
~

 ,  j = 1, 2, …….K where each 

j
Z
~

 is of the type Z
~

 above in the real case. We confined our discussion to the situation where the 

argument matrix was real symmetric positive definite. This was done so that the fractional power of 

matrices and functions of such matrices could be uniquely defined. Corresponding properties are of 

we restrict to the class of Hermitian positive definite matrices.  

Definition: Hermitian positive definite matrix due to Mathai [12], We will denote the conjugate of Z
~

  

by 

~
~
Z  if 

~
Z  Hermitian, then 

~
Z  = 

~
Z *, that is  

~
Z  = 

~
Z *   

~
X  + i

~
Y  = (

~
X  + i

~
)* = 

~
X  + i

~
Y    

    

~
X   = 

~
X  and 

~
Y =

~
Y  
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Thus 

~
X  is the symmetric and 

~
Y  is skew symmetric. Further if 

~
Z  is Hermitian positive definite, 

then all the Eigen values of 

~
Z  are real and positive. Further, matrix variate gamma in the complex 

case is 

      
)(

~
p


 = 
)1(.......)1()(

2

)1(






pp

 

We will use the notation 0Z
~
  to indicate that Z

~
 is Hermitian positive definite. Constant matrices 

will be written without a tilde whether the elements are real or complex unless it has to be emphasized 

that the matrix involved has complex elements. Then in that case a constant matrix will also be 

written with a tilde. 

Let   ,,,...1,,...1,
~

prrjpixX ij  of rank p and of complex variables xij's for all i and j, 

subject to the condition that the rank of X
~

is p, having the density  ,~
Xf where  Xf

~
 is a scalar 

function of X
~

is given by  

  
q

AXBXAqaIAXBXAcXf



1

2

1

2

1

2

1

2

1
~

'
~~~~

)1(
~

'
~~~~~




    ...(1.1) 

for qarrandBBppandAA ,,,0'
~~

,0'
~~

 scalars, ,0,0  a  

  ,0
~

'
~~~~

1 2

1

2

1

 AXBXAqaI  where BandA
~~

are free of the elements in X
~

and c is the normalizing 

constant. For convenience let 2

1

2

1
~~
BandA denote the symmetric positive definite square roots of 

BandA
~~

respectively. A
~

prime denotes the transpose,    denotes the determinant of (.) , I is the 

identity matrix, (.)>0 means that the symmetric matrix (.) is positive definite. Also tr(.) will denote the 

trace of (.) and    will denote the real part of (.). The normalizing constant c can be evaluated by 

using the following transformations. Let 

 XdBAYdBXAY
p ~~~~~~~~

2

1

2

1

2

1

2

1


  

by using Theorem 1-18 of [3]. Let 

UdU
r

YdYYU
p

r

p

pr

~~

2

~

~
'

~~~
2

2

1


























 

by using Theorem 2.16 of [3], where for example, 
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 
 

     1,1
~

...
2

1~~~
4

1













ppppp

pp

p      ...(1.2) 

taking   as real, and if complex the condition is   .1 p  Let  

     UdqaVdUqaV
p ~

1
~~

1
~ 2

  

by using Theorem 1.20 of [3], Then 

     




X Y

q

p
r

YdYYqaIYY

BA

c
XdXf~ ~

1

2

1

2

~
'

~~
1'

~~

~~

~~
1




  

  

















U

q
p

r

p
r

p

rp

UdUqaIU

BA
r

~
12

2

1

2

2 ~~
1

~

~~

2

~




      ...(1.3) 

At this stage we can consider three possibilities: (i) q<1, (ii) q>1, (iii) q=1. 

Let us consider these one by one. 

Case (i) : q<1. 

Then a(1-q) > 0 and then by making the transformation  UqaV
~

1
~

  , we have 

  
 























 












V

q
p

r

r
pp

r

p

pr

VdVIV

qaBA
r

c ~
12

2
122

1

2

2

1

1 ~~~

1
~~

2

~







    …(1.4) 

Now, evaluating the integral in (1.4) by using a matrix- variate type-1 beta, see Section 5.1.4 of [3], 

we have 

 

   


































































p
q

r

p
q

r

qaBA
r

c

P

PP

r
pp

r

p

pr

12

~

1

~

2

~

1
~~

2

~
2

122

1

2

2

1

1











    ...(1.5) 

for 1
2

 p
r

  We will assume the parameters to be real for convenience. 

Case (ii) : q > 1 

 In this case write 1-q= -(q-1) so that q-1 > 0. Then in (1.3) 

    11
~

1
~

1 


  qq UqaIUqaI



        ...(1.6) 
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and then make the transformation  UqaV
~

1
~

 . Then 

  
 













 












V

q
p

r

r
pp

r

p

rp

VdVIV

qaBA
r

c ~
12

2
122

1

2

2
1 ~~~

1
~~

2

~







  

Evaluating the integral by using a matrix-variate type-2 beta integral, see Section 5.1.4 of [3], we have 

the following : 

   























































1

~

21

~

2

~

1
~~

2

~
2

122

1

2

2
1

q

r

q

r

qaBA
r

c

P

PP

r
pp

r

p

rp











   ...(1.7) 

for 1
21

,1
2




 p
r

q
p

r



   

Case (ii) : q = 1 

 Irrespective of whether q approaches 1 from the left or from the right it can be shown that the 

determinant containing q in (1.3) and (1.6) has the following form. which will be stated as a lemma: 

Lemma 1.1: 

    Utrq

q
eUqaI

~
1

1

~
1lim 






   

This result can be seen by observing the following: For a symmetric positive definite matrix U
~

there 

exists a matrix Q
~

such that  

   pjdiagQUQIQQIQQ jp ,...,1,0,,...
~~

'
~

,
~

'
~

,'
~~

1     ...(1.8) 

where  
pdiag  ,...1  denotes a diagonal matrix with the diagonal elements p ,...1  Then 

     '
~~~

'
~~

1
~

1 QQUQQqaIUqaI   

 

     

  






p

j

j

p

qa

diagqaIQUQqaI

1

1

11

...1
~~

'
~

1




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But  

    jeqaI q
j

q










 1
1

1lim  

Then 

    Utr
q

q
eeUqaI

p

j j ~

1

1

1
1lim 





















 

which establishes the result. Hence in case (iii) 

 
 



























U

ep
r

pr

p

pr

UdU

BA
r

c
Utr

~

2

22

2

1

1 ~~

~~

2

~

~


 

 

   
1

2
;

2

~

~~

2

~ 12
222

2

1













































p
r

r

BA
r p

r

P

pr

p

pr










    ...(1.9) 

by using Section 5.1.1 of [3]. 

2. A General density: 

 For qBAX ,,,
~

,
~

,
~

 as defined in (1.1) let 

    
q

AXBXAqaIAXBXAcXf



1

2

1

2

1

2

1

2

1
~

'
~~~~

1
~

'
~~~~~




    ...(2.1) 

for q ≠ 1, and for  q = 1 

 

















2

1

2

1
~

'
~~~~

2

1

2

1
~

'
~~~~

AXBXAtr

eAXBXAc



     ...(2.2) 

where c in (2.1) is given by (1.5) for q<1 and by (1.7) for q>1. From (1.9) we have the c in (2.2). In 

(2.1) a necessary condition to be met is that   2

1

2

1
~

'
~~~~

1 AXBXAqaI   >0. Note that when q moves 

from 1,,1  qisthatto then (2.1) maintains a matrix-variate type-1beta form and when 

q becomes greater than 1 then the type-1 beta form switches to a type-2 beta form. That is, to the left 

of 1 for q a type-1 beta form is available and to the right of 1 for q a type-2 beta form is available. 

Both these type-1 and type-2 beta forms go to a matrix-variate gamma form at q=1.  
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Thus the pathway for q describes a wide range of statistical densities covering type-1 and type-2 beta 

forms and gamma forms. It may also be noted from (1.1) that one need not go for the symmetric 

square roots ,
~~~~

2

1

2

1

BandAofBandA one needs to obtain only a 

representation '
~~~

'
~~~

1111 BBBandAAA  . Then one 2

1
~
A could be replaced by '

~
1A      and 

one .
~~ '

1
2

1

BbyB  

2.1 Arbitrary moments: 

 Arbitrary hth moment for the determinant 2

1

2

1
~

'
~~~~

AXBXA or that for '
~~~
XBX can be obtained 

from c-1 in (1.5), (1.7), (1.9) for the cases q<1, q>1, q=1 respectively, by changing hto   and 

then taking the ratio of the normalizing constants. Thus we have the following, where E denotes the 

expected value. 

Theorem 2.1 

h

AXBXAE 2

1

2

1
~

'
~~~~

   




















































p
q

r
h

p
q

r

r

r
h

qa
P

P

P

P

hp

12

~

12

~

2

~

2

~

1

1
12











 

  for 1
2

,1  p
r

hq       …(2.3) 

  
   




















































21

~

21

~

2

~

2

~

1

1
12

r

q

r
h

q

r

r
h

qa
P

P

P

P

hp











 …(2.4) 

  for 1
2

,1
21

,1 


 p
r

hp
r

h
q

q 


 

  
   1

2
,1

2

~

2

~

1
12


























p
r

hqfor
r

r
h

a
P

P

hp







 …(2.5) 

One may wonder whether (2.3) and (2.4) go to (2.5) when 1q from the left and right 

respectively. This can be seen from an asymptotic expansion for gamma functions or from Stirling’s 

approximation. These will be stated as lemmas. 
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Lemma 2.1: For z and a bounded quantity, 

   z
az

ezaz 


 2

1

2
~

        …(2.6) 

Where   means “approximately equal to”. 

 Then by applying lemma 2.1 and writing   p

~
  in explicit forms one has the following 

results. 

Lemma 2.2: 
      hp

P

P

hpq

p
q

r
h

p
q

r
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12121
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~
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~

1

1
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






























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





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












 





  …(2.7) 

This can be seen by observing the following: 





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





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
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 
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
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When q goes to 1 from the left 
 q1


then for example. 

q
p

j
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 
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This establishes that (2.3) goes to (2.5) when 1q from the left. In a similar way one can see that 

(2.4) also goes to (2.5). Thus q is a pathway from moments in (2.3) and (2.4) to go to the moments in 

(2.5). 
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 One can make some interesting observations from (2.3)-(2.5). From (2.3) we have, 
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where xj is a real scalar type-1 beta random variable with the parameters 
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Thus, structurally,   2

1

2

1
~

'
~~~~

1 AXBXAqa  , for q<1, is a product p of statistically independently 

distributed real type-1 beta random variables with the parameters as mentioned above. Similarly for 

q>1,   2
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~~~~

1 AXBXAqa   is a product of p statistically independently distributed type-2 real scalar 

beta random variables, and from (2.5), 2
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AXBXA is a product of p independently distributed 

gamma random variables. These products of independent scalar type-1 beta and type-2 beta random 

variables go to a product of independent scalar gamma random variables when 1q . Thus, through 

q a pathway is achieved to go to product of independent gamma variables from products of 

independent type-1 beta and type-2 beta variables. 
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with 1-a(1-q)u>0, where, for q< 1 
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for q > 1 
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and for q = 1 
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Distributions of quadratic forms in real Gaussian random variables are discussed in [6] and 

the distributions of generalized quadratic forms with Gaussian vector random variables are considered 

in [7]. But if the prrp  , random matrix X
~

has a matrix-variate distribution as in (1.1), which 

covers rectangular matrix-variate type-1 beta, type-2 beta, gamma type and Gaussian type 

distributions, then the density of the generalized quadratic form follows trivially from (1.1). This will 

be gives as the next theorem. 

Theorem 2.3: When the prrp  , random matrix X
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has the matrix variate distribution as given 
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Where, for q > 1 
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for q > 1 
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 …(2.15) 

for q = 1 
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3. Connection to geometrical probability problems: 

While considering the distributional aspects of the volume content of a r-parallelotope 

generated by the convex hull of linearly independent random points in Euclidean n-space many 

authors had considered the problem when the points are isotropic and are distributed according to a 

beta type-1, type-2 and Gaussian situations. The distributions of the random points that they 

considered were particular cases of (2.9) with IB 
~

. More general situations in this category of 

problems are considered in [4]. Since the determinant of the type 2
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'
~~~

AXBXA , appearing in (1.1), 

can be considered to be volume of an appropriately defined parallelotope a more general model in this 

category of problems is available form (1.1). Note that the p x r matrix X
~

 of full rank can also be 

looked upon as p linearly independent points in a r-dimensional Euclidean space. Then '
~~
XX  is the 

square of the volume of the parallelotope generated by the convex hull of these p points in r-space, 

  2
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1. AXBXAqaHencepr  is the square of the volume of the parallelotope generated by p 

points in a transformed space. Also from (2.3)-(2.5) it is seen that 2
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AXBXA is structurally a 

product of p independent type-1 beta type-2 beta and gamma random variables corresponding to q<1, 

q>1 and q=1 respectively. 
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