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Abstract 

Software testing is a critical phase that is extreme importance in the development life cycle of a 
software. It helps to identify software faults or loacate defects. Removal of bugs and correction of 
faults in a software is a time and resource thirsty activity that requires cpmrehensive planning and  
proper optimization of resources. And, if software metrics are involved in large numbers, it further 
complicates the process of software defect prediction. Thus, proper identification and selection of 
metrics which can enhance the performance of software defect prediction methods become highly 
pertinent as well as extremely challenging. This paper reviews often used software metrics for 
predicting software fault, specifically those, that do so by using machine learning algorithm. 
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1. Introduction 

Relevant literatures tell us that the expenditure in commercial software usage throughout the world 

was $3.8 trillion in 2014 [1]. A hefty portion of 23% of the amount was spent on ensuring high quality 

amd testing efficacy [2]. The expenditure percentage allocated for software testing in software 

development lifecycle (SDLC) signifies the importance and criticality of this process. However, 

largeness and complexities that are generally inherent in software easily give rise to attributes 

defects(faults). Providing quality assurance for such complex and sometimes highly evolving software 

systems becomes very challenging. Though it is unfortunate, we can see that defects in large-scale 

software systems are inevitable and proper mechanisms for locating and correcting the faults need to 

be in place. For the sake of ensuring the system's quality this mechanism has to execute a large 

number of exhaustive tests, making the job extremely tedious and highly expensive. 

Hence, effective and accurate prediction mechanism about components that are defect-prone in 

softwares has become an integral part and is highly essential part of software engineering today. 

Further, validating the age old adgae that 'a stitch in time saves nine,' post deployment location and 

correction of defect in a software is often far more expensive than its indentification and repair during 

the process of development itself [4]. Moreover, delay in fault prediction gives it an easy chance to 

the fault being propagated to subsequent stages of development and thereby making the process of 

fault prediction far more complicaed. Furthermore, the unavailabilty of the  relevant data for fault 

prediction which have to be based on its own failures at those stages gives rise to a catch 22 situation 

and make the whole endeavour extremely challenging [5]. In general the level of softwae reliability is 
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designated by using both internal and external metrics as software quality measures. It is only the 

software's source code that is considered in measuring the internal metrics whereas it is the behaviour 

and the functionalities of the software that is used while measuring external metrics [2]. The 

identification and location of the key internal metrics that are the cause of defects at an early of 

development is imperative for software engineers to be able to predict the key metrics of entities of 

develpoment life-cycles at a later stage for being able to montor and control the performance of the 

products. Changes across various entities such as process, product and resources also need to be 

tracked with released of different and newer versions. With every subsequent release we can find 

changes happening in the design, code, regression tests, test requirements, processes and resources. If 

changes are found in the key attributes of different entities they can well be harbingers of problems 

which might become embedded in design, or a possible compromise in the quality and reliability of 

the product. Therefore, identifying the modules at the development phase which might become error 

prone and might be difficult to manage and test later is always a better thing to do. For this purpose 

we have to measure a large number of internal metrics of different entities. The monitoring, 

measurement, analysis and tracking of diffeernt entitties of a software that is highly evolving becomes 

resource consuming and expensive for the software developers which cannot be overlooked if the 

quality and reliability of the final product is to be ensured. Contemporary and current defect 

predection literatures show limited capability and are distinctly under-achievers as far as less 

expensive and better optimized measurement processes are concerned [6] [7]. 

Generally, every software has a relation to certain functional properties or the other of the software 

project e.g., coupling, cohesion, inheritance, code change, etc., and these properties are indicative of 

external quality attributes like reliability, testability, or fault-proneness [8].  

Table 1.Taxonomy of Software Metrics 

Software Metrics 

Process Metrics Product Metrics 

Code Delta: 

Delta of LOC, Delta of 
Changes 

Code Churn: 

Total LOC  Churned, 
LOC Deleted LOC , 
File Count, weeks 
churn, churn cost and 
files churn etc. 
 

Dynamics Metrics OO Metrics Traditional Metrics 

Yacoub Metrics 
Suit:  Export 
Object Coupling  
(EOC), Import 
Object Coupling 
(IOC) 

Airdelm Metrics 
Suit: 
IC_OD,IC_OM, 
IC_OC,IC_CD, 
IC_CM,  IC_CC, 

CK Metrics Suit: 

CBO, LCOM, DIT, 

NOC,RFC  and  WMC 

Wd Li   Metrics:
CTI,CTM,CTA, NOM,    
SIZE1,SIZE2 

Lorene and Kidd’s 

Size Based : 

Functional Point(FP), 
Source Lines of 
Code (SLOC), Kilo-
SLOC 

Quality based : 

Defect per FP after 
delivery, Defect per 
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Change Metrics, 

Revisions, Refactoring , 

Bug fixes , ashes, etc. 

Developer  Based 

Personal commit 
Sequence, No. of 
corrections etc 

Requirement of 
Metrics: 

Action, Conditional, 
Continuance , 
Imperative etc. 

EC_OD,EC_OM, 
EC_OC, EC_CD, 
EC_CM, EC_CC, 
 

Michel Metrics 
Suits: Dynamic 
CBO for a class, 
Degree of Dynamic 
Coupling between 
two classes at 
runtime, Degree of 
Dynamic Coupling  
within a given set 
of classes, 
R1,R2,RD1,RD2 

Metrics Suit: 

PIM,NIM,NIV,NCM,NC,N
MO,NMI,NMA,SIX,APM 

Mood metrics suit: 

MHF,AHF, MIF,AF,PF,CF 

Brizzed Metrics Suits: 

IFCAIC,ACAIC,OCAIC,F
CAEC,DCAEC etc. 

Bensiva metrics Suit: 
DAM,DCC,CIS,MOA,MF
A,DSC,NOH,ANA,CAM,N
OP,NPM 

SLOC after delivery 

System Complexity: 
Cyclomatic 

Complexity, McCabe  
Complexity etc. 

Halsted metrics: 

Number of Distinct 
operators and 
Number.of  distinct 
operands etc. 

 

A broad classification of different metrics are illustrated in the above table1. 

There are two broad classification of software metrics- 

i. Product metrics : Calcultion of product metrics are done using different features of the finally 

developed software. These metrics confirm whether certain norms of standardisation like that of ISO-

9126 are met or not. Broadly, we have three classification of product metrics i.e., traditional metrics, 

object-oriented metrics, and dynamic metrics [9].  

a) Traditional metrics : It comprises the software metrics that were designed during the 

initial periiods when the field of sofware engineering was nascent and slowly 

emerging, these can been classified as traditional metrics. It mainly includes the 

following metrics: –  

 Metrics of size like, Source lines of code (SLOC), Kilo-SLOC (KSLOC) and 

Function Points (FP). 

 Metrics of quality like, Defects per FP after delivery, Defects per SLOC 

(KSLOC) after delivery –  

 Metrics of system complexity like, McCabe Complexity, Cyclomatic 

Complexity, and Structural complexity [10]. 

 Halstead metrics [11].n1, n2, N1, N2, n, v, N, D, E, B, T  

b) Chidamber and Kemerer proposed a software metrics suite for OO software known as 

CK metrics suite. Given below are some of the OO metrics suites : –  

 Chidamber-Kemerer (CK) metrics suite like, Depth of Inheritance Tree (DIT) 

metric, Coupling between Object class (CBO) metric, a Class (RFC) metric, 

Lack of Cohesion in Methods (LCOM) metric, Response for Weighted Method 

Count (WMC) metric and Number of Children (NOC) metric etc. [12]. 
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 MOODS metrics suite like, Attribute Hiding Factor (AHF) metric, Method 

Hiding Factor (MHF) metric, Method Inheritance Factor (MIF) metric, 

Attribute Inheritance Factor (AIF) metric, Polymorphism Factor (PF) metric 

and Coupling Factor (CF) metric etc. [13] 

 Wei Li and Henry metrics suite like, Coupling Through Inheritance, Coupling 

Through Message passing (CTM), Coupling Through ADT (Abstract Data 

Type), Number of local Methods (NOM), SIZE1 and SIZE2 [14]. 

 Lorenz and Kidd’s metrics suite like, PIM, NIM, NIV, NCM, NCV, NMO, 

NMI, NMA, SIX and APPM [15]. 

 Bansiya metrics suite like, DAM, DCC, CIS, MOA, MFA, DSC, NOH, ANA, 

CAM, NOP and NOM [16].  

  Briand metrics suite like, IFCAIC, ACAIC, OCAIC, FCAEC, DCAEC, 

OCAEC, IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, OCMEC, IFMMIC, 

AMMIC, OMMIC, FMMEC, DMMEC, OMMEC [17]. 

c) Dynamic metrics: Dynamic metrics are those metrics that depend on the features that 

are collected from a program in use. Their importance lies in the fact that they are 

real time and based on how the collected software components behave at the 

actual time of software's execution, they measure specified runtime properties of 

programs, components, and systems [18]. Contrary to the static metrics that use 

non-executing static models for gathering features and calculations, similarly the 

most run-time coupled and highly complex objects and features are identified by 

dynamic metrics. These metrics give us a very distinct indication on the design 

quality [19]. Some examples of the dynamic metrics suites are given below:  

 Yacoub metrics suite like, Export Object Coupling (EOC) and Import Object 

Coupling (IOC) [19]. 

 Arisholm metrics suite like, IC_OD, IC_OM, IC_OC, IC_CD, IC_CM, 

IC_CC, EC_OD, EC_OM, EC_OC, EC_CD, EC_CM, EC_CC [20] 

 Mitchell metrics suite like, Dynamic CBO for a class, Degree of dynamic 

coupling between two classes at runtime, Degree of dynamic coupling within 

a given set of classes, RI , RE , R DI , R DE [21]. 

ii. Process metrics : As the name suggests process metrics are based upon the features collected 

across the complete gamut of the software development life cycle. They help formulate better 

strategies for future processes of software development. They are extremely useful in helping in 

standardization of group of process measures which consequently lead to a software process 

improvement in the long term [9]. For the measurement of effectiveness of a process which is 

designed in this way one deerives a set of metrics that based on results from the process, such as 
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Number of modules that have been changed for a specific bug-fix, finally delivered Work products, 

Calendar time expended, Schedule Conformance, and effort that was put in as well as time taken to 

complete each and every distinct activity [9]. Some Process metrics are as follows : 

a) Code delta metrics like, Delta of changes and Delta of LOC [22]. 

b) Code churn metrics like, Total LOC, Churned LOC, Deleted LOC, File count, Weeks of 

churn, Churn count and Files churned [23]. 

c) Change metrics like, Revisions, Refactorings, Bugfixes, Authors, LOC added, Max. LOC 

Added, Ave. LOC Added, LOC Deleted, Max. LOC Deleted, Ave. LOC Deleted, 

Codechurn, Max. Codechurn, Ave. Codechurn, Max. Changeset, Ave. Changeset and Age 

[22]. 

d) Developer based metrics like, Personal Commit Sequence, Number of Commitments, 

Number of Unique Modules Revised, Number of Lines Revised, Number of Unique 

Package Revised, Average number of Faults Injected by Commit, Number of Developers 

Revising Module and number of Lines of Code that were Revised by Developer [24]. 

e) Requirement metrics like, Action, Conditional, Continuance, Imperative, Incomplete, 

Option, Risk level, Source and Weak phrase [25]. 

f) Network metrics like, Betweenness centrality, Closeness centrality, Eigenvector 

Centrality, Bonacich Power, Structural Holes, Degree centrality and Ego network 

measure [26]. 

2. Related Literature Review 

Achievement of a predecided goal with an ensured high quality of software is a formidable 

challenge. To this end quality assurance cannot depend upon traditional testing approaches which fall 

short because they tend to have limited opportunities of being tested by a user during the process of 

development of software. Automated techniques are now commonly used to predict software defects 

at different stages all across the development life cycle off software with an aim of monitoring 

software quality. This entails tracking and measurement of a vast number of metrics making it time 

consuming, resource thirsty and expensive. Making the determination of significant metrics for which 

software faults can be identified as highly crucial. 

There have been multiple endeavours for analyzing the possible inherent capabilities of the 

software metrics intended for fault prediction purposes in a software. In this field a paradigm shift 

came about when the data repositories of NASA and PROMISE became publicly available, and the 

using open source software projects (OSS) became very commonplace among the researchers for their 

studies. The use of OSS allows easy replication and verification of the findings of the investigations. 

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1271



An extensive review of the reports of various studies that was done by us is summarized in the Table 

2 [63][64].  

Table 2. Studies by Authors regarding Software Matric 

Study/Aim 
of Metrics 
Evaluation 

Method Used Outcome 

Li and Henry 
[14]. 

Fault 
Proneness 

All CK Metrics,Two 
commercial software 
Logistic Regression 

CK metrics suite were evaluated for the first time for 
fault prediction. It was found that with and exception of 
LCOM all the metrics accurately predicted fault 
proneness. However, the Correlation of considered 
metrics with fault proneness was not investigated 

Ohlsson et 
al. [7]. 

Fault 
Proneness 

Various Design Metrics. 
Ericsson Telecom AB 
System. Principal 
component and 
discriminant analysis 

The capability of fault prediction of various design 
metrics was evaluated. Found a significant correlation 
of all the used metrics to fault proneness. However this 
evaluation study was performed over a single software 
project. Evaluation of fault prediction models not 
thorough 

Tang et al. 
[27]. 

Fault 
Proneness 

All CK Metrics. Three 
industrial real time 
systems. Logistics 
regression analysis 

The correlation of OO metrics with fault proneness was 
investigated. A significant correlation between RFC and 
WMC metrics to fault proneness was found. There was 
an absence of formation of a fault prediction model to 
evaluate the capability of considered metrics for fault 
prediction.  

Chidamber 
et al. [12]. 

Productivity 
and design 
efforts 

All CK Metrics. Three 
Commercial Trading 
Systems Stepwise 
Regression 

Evaluation of OO Metrics for practicing project 
management information. A significant correlation 
between CBO and LCOM to fault proneness was found. 
The capabilty of the considered metrics has been 
assessed by the use of correlation analysis only. There 
was an absence of use of any fault prediction model. 

Emam and 
Melo [28]. 

Fault 
Proneness 

All Briand Metrics.One 
Version of a commercial 
Java application. Logistic 
Regression 

Comparative capability of the software metrics were 
evaluated over the subsequent releases of software 
projec. Only OCAEC, ACMIC and OCMEC metrics 
showed a correlation with fault-proneness. However 
only one software system was studied for evaluation. 
An exhaustive evaluation of fault prediction models was 
not done. 

Briand et al. 
[29]. 

Fault 
Proneness 

All metrics of CK metrics 
suites and Briand metrics 
suite. 

An open multi-agent 
system development 
environment. 

Logistics regression and 
principal component 

The relationship between fault proneness and OO design 
metrics was investigated. Importance of coupling metrics 
as predictor of faults was established.  

Import coupling has a stronger impact on fault proneness 
than the impact of export coupling. The evaluation of 
considered metrics has been based only on correlation
measure. The experiments have been performed using 
only one software. 
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analysis. 

Shanthi and 
Duraiswamy  
[30]. 

Error 
Proneness 

All MOOD metrics 
Mozilla e-mail suite 
Logistic regression, 
decision tree and neural 
network 

First study to evaluate MOOD metrics suite for fault 
prediction. Found a significant correlation between all 
the metrics with error proneness. However, it lacked a 
thorough evaluation of fault prediction models and 
correlation of the metrics used with fault prediction was 
not calculated as well. 

Shatnawi et 
al. [31]. 

Error 
proneness 
and design 
efforts 

Various OO design 
metrics  Eclipse 2.0 
Uni-variate  binary 
regression and stepwise 
regression 

Prediction of many quality factors of OO metrics were 
evaluated. A association between CTA and CTM with 
error proneness was established. 

Experiments have been performed using only a single 
project. Evaluation of the results have only been based 
on statistical measures. 

Shatnawi 
and Li [32]. 
Error 
Proneness 

Various OO design 
metrics 
Three release of Eclipse 
Project 
Multivariate logistic 
regression 

Prediction for severity of faults of software metrics 
were evaluated. Established that CTA, CTM and NOA 
metrics predicted class-error probability in all error 
severity categories quite well. 

The collection of dataset of faults has been done with 
the help of some commercial tools leasding to 
questionable accuracy. 

Kpodjedo et 
al. [33]. 
Number of 
defects 

All CK Metrics, class rank 
(CR), evolution cost (EC) 
Ten versions of Rhino 
Logistic Regression, 
classification regression 
trees 

A couple of new search-based metrics were proposed 
and studied. It was found that WMC, LCOM, RFC and 
EC metrics were quite promising for defect prediction. 
The proposal lacks theoretical validation of the 
concerned metrics. Metrics was extracted using home 
made tools without any proper validation. 

Selvarani et. 
al. [34]. 
 
Defeat 
proneness 

RFC, WMC, and DIT 
Two commercial projects 
Property based analysis 
domain knowledge of 
experts 

Evaluation on the basis of the threshold values of OO 
metrics was done. The study showed that the influence 
of DIT on defect proneness was between 10-33% for a 
given value of 1-3, when the value of RFC crosses 100 
it causes more defects. No faults are caused when the 
value of WMC lies between 25 and 60.  

This study is based only on three metrics and we see 
that there is a lack of details of fault datasets as well. 

Elish et. al. 
[35]. 
Fault 
Proneness in 
package 
level 

Martin, MOOD, and CK 
metrics suites 
Eclipse project 
Spearman’s correlation 
and multivariate 
regression 

On comparative evaluation of three package level 
metrics (i.e., Martin, MOOD and CK metric suites), it 
was found that Martin metrics suite is more accurate 
than the MOOD and CK suites for fault prediction. 
 
A few more case studies are needed to properly validate 
this finding. 

Singh and 
Verma [36]. 
Fault 
prediction 

All  CK metrics 
Two version of iText,  
a JAVA-PDF library 
software 
J48 and Naïve Bayes 

Some OSS (open source projects) was used for 
evaluation of CK metric suite for fault prediction. It was 
found that fault proneness of the software was well 
indicated by CK metrics.  

The use of some commercial tools in the collection fo 
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the fault dataset leads to an uncertainty in accuracy 
limiting the evaluation results.  

Chowdhury 
and 
Zulkernine 
[37]. 

Prediction 
of 
vulnerability 

Complexity, coupling and 
cohesion metrics (CCC 
metrics) 

Mozilla Firefox 

Decision tree, Naïve Bayes, 
random forest, and logistic 
regression 

Vulnerability prediction of OO metrics was evaluated. 
Results showed that vulnerability prediction can be 
made with the use of CCC, and this was irrespective of 
the prediction technique used. 

The vulnerability prediction of only a single metrics i.e., 
CCC metrics have been evaluated. It needs further 
evaluation of other metrics for vulnerability. 

Dallal and 
Briand [38]. 
Early stage 
fault 
prediction 

Connectivity based object 
oriented class cohesion 
metrics 
Four open- sources 
software projects 
Correlation and principal 
component analyses, 
logistic regression 

It showed that with a lower value of cohesion we tend 
to get more faults. Path-connectivity cohesion metrics 
showed a greater promise than most of the cohesion 
metrics. 
If metrics have two or more features that are similar, 
these features tend to get merged by the metric, 
rendering it difficult to discriminate which attribute is 
expected to be accessed by a method, since the methods 
of same types are being called. 

Rathore and 
Gupta [39]. 
 
Fault 
prediction 

18 OO Metrics 
6 Releases of  PROP 
dataset from PROMISE 
repository 
Spearman correlation, 
logistic and linear 
regression 

Individual evaluation of various OO metrics along with 
an evaluation in combination with other metrics was 
made. Results showed that classes with high coupling 
tend to show a higher degree of fault proneness.  There 
is no relevance of Cohesion and Inheritance metrics in 
predicting fault proneness.  

The utility of the proposed methodology needs to be 
established properly by more datasets. 

Rathore and 
Gupta [40]. 
Fault 
Prediction 

 18 OO metrics 
5 softwares with their 16 
releases from PROMISE 
repository 
Spearman Correlation, 
logistics and linear 
regression 

Fault prediction capabilities of OO metrics over 
multiple releases of software was validated by this 
study. It showed that with the exception of cohesion 
metric, all the considered metrics significantly predicted 
faults. 
More case studies are needed to establish the  
usefulness of the proposed methodology. 

Peng et al. 
[41]. 
Software 
Fault 
prediction. 

CK, Martin’s, QMOOD, 
extended CK metrics 
suites, complexity 
metrics, and LOC 

10 PROMISE project 
datasets with their 34 
releases 

J48, logistics regression, 
Naïve Bayes, decision 
table, SVM, and Bayesian 
network 

This study helped determine a subset of metrics that 
show a promising usefulness for fault prediction. An 
evaluation of top five frequently used software metrics 
was done and it was found that they produced 
comparable results of fault prediction to the results that 
were produced by using full set of metrics. 

The models for fault prediction comprised of all, filter 
and top 5 metrics only. This does not take into account 
the fact the possibilty of other combination of software 
metrics. There has been no analysis of the data 
distribution while exercising the statistical test. 

Process 
Metrics 
Graves et al. 

Change history 
A legacy system written 
in C 

Age and change history metrics were evaluated for fault 
prediction. It was found that the better predictor was 
numbers of changes to the module whereas when 
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[42]. 
Predicting 
number of 
faults 

Generalized linear models predicting the number of fault is concerned number of 
developers was of almost no help at all. 
The evaluation experiment used just one software project, 
and as far as evaluation of the software metric is 
concerned no separate and distinct fault prediction model 
was built. 

Nikora and 
Munson 
[43]. 
Fault 
Prediction 

Source code metrics, 
change metrics 
Darwin System 
Principle component 
Analysis 

A new method for selecting significant metrics for fault 
prediction was defined.  Results showed an enhanced 
and high quality fault prediction models were possible 
with these new defined metrics.  

Here also we see a lack of comparison analysis and a 
lack of distinctive and separate fault prediction model. 

Hassan [44]. 
Prediction 
of Faults 

Change complexity 
metrics 
6 open source projects 
Linear regression and 
statistical test 

Code change process was used as a base for complexity 
metrics. It was found that in comparison to traditional 
software metrics change complexity metrics were a 
better predictors of fault proneness. 
 
However, the proposed metrics have not been 
substantiated by any theoretical validation. This 
prediction methodology stands on the validations given 
by very small number of fault datasets. 

Bird et 
al.[45]. 
Prediction 
of software 
failures 

Socio- Technical 
networks metrics 
Windows vista and the 
ECLIPSE IDE 
Principal component 
analysis and logistic 
regression 

Combined socio-technical metrics were investigated for 
their influence on fault prediction. The socio-technical 
metrics seemed to produce better recall values in 
comparison to dependency and contribution metrics. 

It has a limited proof as the number of case studies were 
low. A higher number of case studies are required to 
ascertain its usefulness.. 

Nachiappan 
et al. [22]. 
Prediction 
of defect-
prone 
components 

Change bursts suite 
Windows Vista 
Stepwise regression 

Capabilities of change metrics were studied for fault 
prediction. It showed that change burst metrics provide  
excellent defect predictions. 
 
There is a lack of thoroughness as far as evaluation and 
validation of the results are concerned. 

Mastsumoto 
et al. [24]. 
Fault 
Prediction 

Developer metric suite 
Eclipse Project dataset 
Correlation and linear 
regression analysis 

Influence of developer features on fault prediction was 
studied. The conclusion was that developers metrics make
good predictors of defects. 

There is a lack of validation of proposed metrics, with 
only a single software project being used for evaluation 
experiments. 

Krishnan et 
al. [46]. 
 
Prediction 
of fault 
prone files. 

Change metrics suite 
Three releases of Eclipse 
J48 algorithm 

Change metrics over multiple releases of the software 
project were evaluated for fault prediction. Showing that 
all change metrics worked as nice predictors of defects. 

However again just a single fault prediction technique 
has been used for the validation of the results. Only one 
dataset over three releases were used for the studying  
software fault prediction. 
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Devine et al. 
[47]. 
Faults 
Prediction 

Various source code and 
change metrics 
Poly Flow a suite of 
software testing tools 
 Spearman correlation 

A componenet level investigation of the association of 
software faults with other metrics was done. Results 
indicated that with the exceptions of average file churn 
metrics and average complexity metrics, all other metrics 
showed a positive correlation with defects.  
 
For the proposed methodology to be established, a higher 
number of case studies need to be performed. 

Ihara et al. 
[48]. 
Bug-fix 
prediction 

21 variables of base, 
status, period and 
developer metrics 
Eclipse project 
Regression analysis 

A model using many software metrics for bug-fix 
prediction was developed. It established the all 
importance of the base metrics while the building and 
formulation of the model. 

The validation was based on the evaluation and study of 
a single fault prediction technique, this was done using 
only one software with a small timeframe of 3 months of 
releases to its credit.  

Rahman and 
Devanbu 
[49]. 
Defect 
prediction 

14 process metrics, 
Various code metrics. 12 
projects developed by 
Apache 
Logistic regression, J48, 
SVM and Naïve Bayes 

For this purpose combined capability of process and code 
metrics for fault prediction was studied, with a result that 
process metrics almost always outperformed code 
metrics. 
 
The accuracy is not well ascertaind as commercial tools 
have been used to calculate code. The results are not 
based on exhaustive evaluation.  

Ma et al. 
[50]. 
Fault 
proneness 

Requirement metrics and 
design metrics  
CMI, PCI 
Naïve Bayes, AdaBoost, 
bagging, random forest, 
logistic regression 

Requirement metrics were evaluated for fault prediction 
for the first time. Results indicated that if the requirement 
metrics were combined with design metrics the fault 
prediction capabilities showed a marked improvement.  

A limited number ie., a couple of datasets were used for 
evaluation studies of considered software metrics. No 
analysis of distribution of data for statistical tests was 
done. 

Wu et al. 
[51]. 
Fault 
prediction 

8 developer metrics, 22 
process and product 
metrics 
8 open source Java 
projects 
Principle component 
analysis 

The influence of quality of developer on software fault 
prediction was evaluated. The result indicated 
improvementFound that the combination of developer, 
process, and product metrics produced improved fault 
prediction results. 
 
The methodology needs to be evaluated with more 
datasets of different domains for the purpose of 
validation.. 

Xia et al. 
[52]. 
Faults 
Prediction 

Code metrics and 
process metrics 
Tracking telemetry and 
control (TT and C) 
software 
Improved PSO and 
optimized SVM 

A Selection approach was proposed for useful software 
metrics for fault prediction. Results indicated that out of 
number of code and process metrics used, CM, MMSLC, 
and HM metrics showed a significant influence on fault 
prediction. 

With only a couple of fault datasets being used for the 
purpose of validation of the results, the selection 
approach which has been proposed is based on 
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inadequate validation to establish its applicability. 

Other 
metrics 
Zhang [53]. 
Defect 
Prediction 

LOC 
Three versions of the 
Eclipse system (2.0, 2.1 
and 3.0), 9 NASA 
projectsSpearman 
correlation, multilayer 
perceptron, logistics 
regression, Naïve Bayes, 
decision tree 

A relation between LOC 
and software was analyzed. defects. Results showed that 
a weak but positive relationship exists between LOC and 
defects. 20% of the largest files are responsible for 
62.29% prelease defects and 60.62% post-release 
defects. 

However this study too 
is based on just one metric (LOC). The domain of data 
has not been analyzed for the statistical tests. 

Rana et al. 
[54]. 
Number of 
defects 
prediction 

Sotware Science metrics 
(SSM) 
KCI dataset 
Bayesian, decision tree, 
linear regression, 
support vector regression 

Effectiveness of SSM metrics in classification of 
software modules as defective or defect free was 
investigated. Its performance for identification of number 
of defects prediction was not up to mark.  

Validation of results has been based on a very small 
dataset and concerned metrics' correlation with fault 
proneness has not been evaluated. 

Mizuno and 
Hata [55]. 
Fault prone 
module 
detection 

Complexity and text 
feature metrics 
Three versions of the 
Eclipse System (2.0, 2.1 
and 3.0) 
Logistic regression 

A number of complexity and text metrics were evaluated 
for fault prediction. Results indicate the better 
performance of complexity metrics over text metrics for 
the purpose of fault prediction. 
 
The study hasn't been substantiated by providing the 
details of collection of data and its preprocessing. The 
metrics has also not been validated theoretically. 

3. Discussion 

 Achievement of a predecided goal with an ensured high quality of software is a formidable 

challenge. To this end quality assurance cannot depend upon traditional testing approaches which fall 

short due to the limited opportunities of user testing in this approach during the development of 

software. The differing results seem to arise due to contest between and nature of data compiled. Hall 

et al [63] submitted that models between the context may affect prediction result. 

The correlation between fault proneness and size metric (LOC) and fault proneness has been 

investigated many times [53][56] Ostrand et a.[57] came up with the model for prediction of fault 

density with the use of LOC metrics and came to the result that a significant correlation between LOC 

metric and prediction of fault density exists. Zhang [53], in a different study came to the conclusion 

that sufficient statistical evidence existed to show that a weak relationship though positive, between 

LOC and defects does exist.  But Rosenberg [59] gave a contrary opinion pointing out that though, 

there exists a relationship between defect density and LOC, it is negative. Further, they came to a 

conclusion that LOC in combination with other software metrics becomes the most pertinent feature 

in software fault prediction. In another study, Emam and Melo [28] demonstrated that a simple 

relationship did exist between class size and faults, they further went on to demonstrate that class size 
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had no threshold effect on the occurrences of faults. Various researchers [14][17][59][60] have 

examined the use of complexity metrics for building fault prediction models. The predictive 

capabilitis of complexity metrics were confirmed by some of the studies [59][60], while others 

reported that they did not perform so well [61]. In a study, Olague et al. [59] came up with the 

conclusion that the complexity metric shape gave a better result in prediction of faults. Further, it 

became evident that less commonly used metrics such as AMC and SDMC outperformed metrics like 

LOC and WMC as good predictors of fault proneness. Zhouetal.[60] reported that when used in a 

stand alone way complexity metrics exhibited a predictive ability that was average. But their 

explanatory ability increased formidably when they were used in combination with LOC metric. The 

evaluation of how appropriate are process metrics for fault proneness has been done through multiple 

studies [47][62]. After investigating many process metrics Devine et al. [47] found a positive 

correlation between most of the process metrics and defects. In a comparative study between many 

process metrics in one hand and code metrics on another, Moser et al.[62] came to the conclusion that 

process metrics have the capability to differentiate faulty software modules from non faulty ones and 

perform better in fault prediction when compared to source code metrics. However, Hall et al. [63] 

came to the conclusion that process metrics do not perform better in comparison to OO metrics. It has 

been observed that the results do differ when studies are performed on a set of metrics. this probably 

happens because the context in which data is collected are varied and it also depends on the varied 

usage of dependent variable (such as fault density, fault proneness, pre-release faults, and post-release 

faults) during investigation and the implication of linear relationship. 

4. Conclusion 

We see a strong coupling of established metrics with size measures, like lines of code Complexity 

metrics and in turn size measures seem to have a certain amount of predictive capabilities. OO 

(Object-oriented) metrics perform better than complexity and size metrics when compared for 

prredicting faults and defects. Though showing a certain corelation to size they encompass certain 

some additional properties as well. Static code metrics, just as complexity, size and OO metrics, are 

suited for observing a particular version of software, but with a descending accuracy with each 

software iteration. Hence, they are not suitable for highly iterative, post-release software, where the 

main cause of faults is because of the development process and not so much because of the properties  

of size and design. In such cases and environment, we find a better performance of process metrics in 

comparison to static code metrics as far as the accuracy of prediction of fault is concerned. Most of 

the studies performed for fault prediction capabilities used size, complexity and OO metrics (70%), 

whereas process metrics, with apparently high possibility, were used less often (23%). A tendency for 

researchers and scientist from the industry to use process metrics more was seen, whereas academia 

based researchers seemed to prefer OO metrics. This might be so, probably because the process 
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metrics are better performers when used for industrial purposes in comparison to static code metrics: 

and process metrics fulfill the industrial need better. Hence we suggest and appeal to researchers to 

take up process metrics in larger numbers for future studies. Further, seemingly one of the three 

following programming languages was frequently used, i.e. C++ (35%), Java (34%) and C (15%). 

Other OO languages (e.g. C#) should also be considered in investigating the performance of metrics. 

Since there seems to be a variation affecting the performance of metrics when different programming 

languages are used, impetus should be laid on their use in further investigations. 
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