

Software Metrics Selection for Fault Prediction: A Review

Anil Kumar Pandey*1 and Manjari Gupta1

1.DST-CIMS, Banaras Hindu University, Lanka ,Varanasi-221005,Uttar Pradesh,India

1akpandey@bhu.ac.in,2majarigupta.cs@gmail.com

Abstract

Software testing is a critical phase that is extreme importance in the development life cycle of a
software. It helps to identify software faults or loacate defects. Removal of bugs and correction of
faults in a software is a time and resource thirsty activity that requires cpmrehensive planning and
proper optimization of resources. And, if software metrics are involved in large numbers, it further
complicates the process of software defect prediction. Thus, proper identification and selection of
metrics which can enhance the performance of software defect prediction methods become highly
pertinent as well as extremely challenging. This paper reviews often used software metrics for
predicting software fault, specifically those, that do so by using machine learning algorithm.

Keywords: Software metrics, Fault prediction, Defect prediction, Cyclomatic Complexity

1. Introduction

Relevant literatures tell us that the expenditure in commercial software usage throughout the world

was $3.8 trillion in 2014 [1]. A hefty portion of 23% of the amount was spent on ensuring high quality

amd testing efficacy [2]. The expenditure percentage allocated for software testing in software

development lifecycle (SDLC) signifies the importance and criticality of this process. However,

largeness and complexities that are generally inherent in software easily give rise to attributes

defects(faults). Providing quality assurance for such complex and sometimes highly evolving software

systems becomes very challenging. Though it is unfortunate, we can see that defects in large-scale

software systems are inevitable and proper mechanisms for locating and correcting the faults need to

be in place. For the sake of ensuring the system's quality this mechanism has to execute a large

number of exhaustive tests, making the job extremely tedious and highly expensive.

Hence, effective and accurate prediction mechanism about components that are defect-prone in

softwares has become an integral part and is highly essential part of software engineering today.

Further, validating the age old adgae that 'a stitch in time saves nine,' post deployment location and

correction of defect in a software is often far more expensive than its indentification and repair during

the process of development itself [4]. Moreover, delay in fault prediction gives it an easy chance to

the fault being propagated to subsequent stages of development and thereby making the process of

fault prediction far more complicaed. Furthermore, the unavailabilty of the relevant data for fault

prediction which have to be based on its own failures at those stages gives rise to a catch 22 situation

and make the whole endeavour extremely challenging [5]. In general the level of softwae reliability is

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1267

designated by using both internal and external metrics as software quality measures. It is only the

software's source code that is considered in measuring the internal metrics whereas it is the behaviour

and the functionalities of the software that is used while measuring external metrics [2]. The

identification and location of the key internal metrics that are the cause of defects at an early of

development is imperative for software engineers to be able to predict the key metrics of entities of

develpoment life-cycles at a later stage for being able to montor and control the performance of the

products. Changes across various entities such as process, product and resources also need to be

tracked with released of different and newer versions. With every subsequent release we can find

changes happening in the design, code, regression tests, test requirements, processes and resources. If

changes are found in the key attributes of different entities they can well be harbingers of problems

which might become embedded in design, or a possible compromise in the quality and reliability of

the product. Therefore, identifying the modules at the development phase which might become error

prone and might be difficult to manage and test later is always a better thing to do. For this purpose

we have to measure a large number of internal metrics of different entities. The monitoring,

measurement, analysis and tracking of diffeernt entitties of a software that is highly evolving becomes

resource consuming and expensive for the software developers which cannot be overlooked if the

quality and reliability of the final product is to be ensured. Contemporary and current defect

predection literatures show limited capability and are distinctly under-achievers as far as less

expensive and better optimized measurement processes are concerned [6] [7].

Generally, every software has a relation to certain functional properties or the other of the software

project e.g., coupling, cohesion, inheritance, code change, etc., and these properties are indicative of

external quality attributes like reliability, testability, or fault-proneness [8].

Table 1.Taxonomy of Software Metrics

Software Metrics

Process Metrics Product Metrics

Code Delta:

Delta of LOC, Delta of
Changes

Code Churn:

Total LOC Churned,
LOC Deleted LOC ,
File Count, weeks
churn, churn cost and
files churn etc.

Dynamics Metrics OO Metrics Traditional Metrics

Yacoub Metrics
Suit: Export
Object Coupling
(EOC), Import
Object Coupling
(IOC)

Airdelm Metrics
Suit:
IC_OD,IC_OM,
IC_OC,IC_CD,
IC_CM, IC_CC,

CK Metrics Suit:

CBO, LCOM, DIT,

NOC,RFC and WMC

Wd Li Metrics:
CTI,CTM,CTA, NOM,
SIZE1,SIZE2

Lorene and Kidd’s

Size Based :

Functional Point(FP),
Source Lines of
Code (SLOC), Kilo-
SLOC

Quality based :

Defect per FP after
delivery, Defect per

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1268

Change Metrics,

Revisions, Refactoring ,

Bug fixes , ashes, etc.

Developer Based

Personal commit
Sequence, No. of
corrections etc

Requirement of
Metrics:

Action, Conditional,
Continuance ,
Imperative etc.

EC_OD,EC_OM,
EC_OC, EC_CD,
EC_CM, EC_CC,

Michel Metrics
Suits: Dynamic
CBO for a class,
Degree of Dynamic
Coupling between
two classes at
runtime, Degree of
Dynamic Coupling
within a given set
of classes,
R1,R2,RD1,RD2

Metrics Suit:

PIM,NIM,NIV,NCM,NC,N
MO,NMI,NMA,SIX,APM

Mood metrics suit:

MHF,AHF, MIF,AF,PF,CF

Brizzed Metrics Suits:

IFCAIC,ACAIC,OCAIC,F
CAEC,DCAEC etc.

Bensiva metrics Suit:
DAM,DCC,CIS,MOA,MF
A,DSC,NOH,ANA,CAM,N
OP,NPM

SLOC after delivery

System Complexity:
Cyclomatic

Complexity, McCabe
Complexity etc.

Halsted metrics:

Number of Distinct
operators and
Number.of distinct
operands etc.

A broad classification of different metrics are illustrated in the above table1.

There are two broad classification of software metrics-

i. Product metrics : Calcultion of product metrics are done using different features of the finally

developed software. These metrics confirm whether certain norms of standardisation like that of ISO-

9126 are met or not. Broadly, we have three classification of product metrics i.e., traditional metrics,

object-oriented metrics, and dynamic metrics [9].

a) Traditional metrics : It comprises the software metrics that were designed during the

initial periiods when the field of sofware engineering was nascent and slowly

emerging, these can been classified as traditional metrics. It mainly includes the

following metrics: –

 Metrics of size like, Source lines of code (SLOC), Kilo-SLOC (KSLOC) and

Function Points (FP).

 Metrics of quality like, Defects per FP after delivery, Defects per SLOC

(KSLOC) after delivery –

 Metrics of system complexity like, McCabe Complexity, Cyclomatic

Complexity, and Structural complexity [10].

 Halstead metrics [11].n1, n2, N1, N2, n, v, N, D, E, B, T

b) Chidamber and Kemerer proposed a software metrics suite for OO software known as

CK metrics suite. Given below are some of the OO metrics suites : –

 Chidamber-Kemerer (CK) metrics suite like, Depth of Inheritance Tree (DIT)

metric, Coupling between Object class (CBO) metric, a Class (RFC) metric,

Lack of Cohesion in Methods (LCOM) metric, Response for Weighted Method

Count (WMC) metric and Number of Children (NOC) metric etc. [12].

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1269

 MOODS metrics suite like, Attribute Hiding Factor (AHF) metric, Method

Hiding Factor (MHF) metric, Method Inheritance Factor (MIF) metric,

Attribute Inheritance Factor (AIF) metric, Polymorphism Factor (PF) metric

and Coupling Factor (CF) metric etc. [13]

 Wei Li and Henry metrics suite like, Coupling Through Inheritance, Coupling

Through Message passing (CTM), Coupling Through ADT (Abstract Data

Type), Number of local Methods (NOM), SIZE1 and SIZE2 [14].

 Lorenz and Kidd’s metrics suite like, PIM, NIM, NIV, NCM, NCV, NMO,

NMI, NMA, SIX and APPM [15].

 Bansiya metrics suite like, DAM, DCC, CIS, MOA, MFA, DSC, NOH, ANA,

CAM, NOP and NOM [16].

 Briand metrics suite like, IFCAIC, ACAIC, OCAIC, FCAEC, DCAEC,

OCAEC, IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, OCMEC, IFMMIC,

AMMIC, OMMIC, FMMEC, DMMEC, OMMEC [17].

c) Dynamic metrics: Dynamic metrics are those metrics that depend on the features that

are collected from a program in use. Their importance lies in the fact that they are

real time and based on how the collected software components behave at the

actual time of software's execution, they measure specified runtime properties of

programs, components, and systems [18]. Contrary to the static metrics that use

non-executing static models for gathering features and calculations, similarly the

most run-time coupled and highly complex objects and features are identified by

dynamic metrics. These metrics give us a very distinct indication on the design

quality [19]. Some examples of the dynamic metrics suites are given below:

 Yacoub metrics suite like, Export Object Coupling (EOC) and Import Object

Coupling (IOC) [19].

 Arisholm metrics suite like, IC_OD, IC_OM, IC_OC, IC_CD, IC_CM,

IC_CC, EC_OD, EC_OM, EC_OC, EC_CD, EC_CM, EC_CC [20]

 Mitchell metrics suite like, Dynamic CBO for a class, Degree of dynamic

coupling between two classes at runtime, Degree of dynamic coupling within

a given set of classes, RI , RE , R DI , R DE [21].

ii. Process metrics : As the name suggests process metrics are based upon the features collected

across the complete gamut of the software development life cycle. They help formulate better

strategies for future processes of software development. They are extremely useful in helping in

standardization of group of process measures which consequently lead to a software process

improvement in the long term [9]. For the measurement of effectiveness of a process which is

designed in this way one deerives a set of metrics that based on results from the process, such as

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1270

Number of modules that have been changed for a specific bug-fix, finally delivered Work products,

Calendar time expended, Schedule Conformance, and effort that was put in as well as time taken to

complete each and every distinct activity [9]. Some Process metrics are as follows :

a) Code delta metrics like, Delta of changes and Delta of LOC [22].

b) Code churn metrics like, Total LOC, Churned LOC, Deleted LOC, File count, Weeks of

churn, Churn count and Files churned [23].

c) Change metrics like, Revisions, Refactorings, Bugfixes, Authors, LOC added, Max. LOC

Added, Ave. LOC Added, LOC Deleted, Max. LOC Deleted, Ave. LOC Deleted,

Codechurn, Max. Codechurn, Ave. Codechurn, Max. Changeset, Ave. Changeset and Age

[22].

d) Developer based metrics like, Personal Commit Sequence, Number of Commitments,

Number of Unique Modules Revised, Number of Lines Revised, Number of Unique

Package Revised, Average number of Faults Injected by Commit, Number of Developers

Revising Module and number of Lines of Code that were Revised by Developer [24].

e) Requirement metrics like, Action, Conditional, Continuance, Imperative, Incomplete,

Option, Risk level, Source and Weak phrase [25].

f) Network metrics like, Betweenness centrality, Closeness centrality, Eigenvector

Centrality, Bonacich Power, Structural Holes, Degree centrality and Ego network

measure [26].

2. Related Literature Review

Achievement of a predecided goal with an ensured high quality of software is a formidable

challenge. To this end quality assurance cannot depend upon traditional testing approaches which fall

short because they tend to have limited opportunities of being tested by a user during the process of

development of software. Automated techniques are now commonly used to predict software defects

at different stages all across the development life cycle off software with an aim of monitoring

software quality. This entails tracking and measurement of a vast number of metrics making it time

consuming, resource thirsty and expensive. Making the determination of significant metrics for which

software faults can be identified as highly crucial.

There have been multiple endeavours for analyzing the possible inherent capabilities of the

software metrics intended for fault prediction purposes in a software. In this field a paradigm shift

came about when the data repositories of NASA and PROMISE became publicly available, and the

using open source software projects (OSS) became very commonplace among the researchers for their

studies. The use of OSS allows easy replication and verification of the findings of the investigations.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1271

An extensive review of the reports of various studies that was done by us is summarized in the Table

2 [63][64].

Table 2. Studies by Authors regarding Software Matric

Study/Aim
of Metrics
Evaluation

Method Used Outcome

Li and Henry
[14].

Fault
Proneness

All CK Metrics,Two
commercial software
Logistic Regression

CK metrics suite were evaluated for the first time for
fault prediction. It was found that with and exception of
LCOM all the metrics accurately predicted fault
proneness. However, the Correlation of considered
metrics with fault proneness was not investigated

Ohlsson et
al. [7].

Fault
Proneness

Various Design Metrics.
Ericsson Telecom AB
System. Principal
component and
discriminant analysis

The capability of fault prediction of various design
metrics was evaluated. Found a significant correlation
of all the used metrics to fault proneness. However this
evaluation study was performed over a single software
project. Evaluation of fault prediction models not
thorough

Tang et al.
[27].

Fault
Proneness

All CK Metrics. Three
industrial real time
systems. Logistics
regression analysis

The correlation of OO metrics with fault proneness was
investigated. A significant correlation between RFC and
WMC metrics to fault proneness was found. There was
an absence of formation of a fault prediction model to
evaluate the capability of considered metrics for fault
prediction.

Chidamber
et al. [12].

Productivity
and design
efforts

All CK Metrics. Three
Commercial Trading
Systems Stepwise
Regression

Evaluation of OO Metrics for practicing project
management information. A significant correlation
between CBO and LCOM to fault proneness was found.
The capabilty of the considered metrics has been
assessed by the use of correlation analysis only. There
was an absence of use of any fault prediction model.

Emam and
Melo [28].

Fault
Proneness

All Briand Metrics.One
Version of a commercial
Java application. Logistic
Regression

Comparative capability of the software metrics were
evaluated over the subsequent releases of software
projec. Only OCAEC, ACMIC and OCMEC metrics
showed a correlation with fault-proneness. However
only one software system was studied for evaluation.
An exhaustive evaluation of fault prediction models was
not done.

Briand et al.
[29].

Fault
Proneness

All metrics of CK metrics
suites and Briand metrics
suite.

An open multi-agent
system development
environment.

Logistics regression and
principal component

The relationship between fault proneness and OO design
metrics was investigated. Importance of coupling metrics
as predictor of faults was established.

Import coupling has a stronger impact on fault proneness
than the impact of export coupling. The evaluation of
considered metrics has been based only on correlation
measure. The experiments have been performed using
only one software.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1272

analysis.

Shanthi and
Duraiswamy
[30].

Error
Proneness

All MOOD metrics
Mozilla e-mail suite
Logistic regression,
decision tree and neural
network

First study to evaluate MOOD metrics suite for fault
prediction. Found a significant correlation between all
the metrics with error proneness. However, it lacked a
thorough evaluation of fault prediction models and
correlation of the metrics used with fault prediction was
not calculated as well.

Shatnawi et
al. [31].

Error
proneness
and design
efforts

Various OO design
metrics Eclipse 2.0
Uni-variate binary
regression and stepwise
regression

Prediction of many quality factors of OO metrics were
evaluated. A association between CTA and CTM with
error proneness was established.

Experiments have been performed using only a single
project. Evaluation of the results have only been based
on statistical measures.

Shatnawi
and Li [32].
Error
Proneness

Various OO design
metrics
Three release of Eclipse
Project
Multivariate logistic
regression

Prediction for severity of faults of software metrics
were evaluated. Established that CTA, CTM and NOA
metrics predicted class-error probability in all error
severity categories quite well.

The collection of dataset of faults has been done with
the help of some commercial tools leasding to
questionable accuracy.

Kpodjedo et
al. [33].
Number of
defects

All CK Metrics, class rank
(CR), evolution cost (EC)
Ten versions of Rhino
Logistic Regression,
classification regression
trees

A couple of new search-based metrics were proposed
and studied. It was found that WMC, LCOM, RFC and
EC metrics were quite promising for defect prediction.
The proposal lacks theoretical validation of the
concerned metrics. Metrics was extracted using home
made tools without any proper validation.

Selvarani et.
al. [34].

Defeat
proneness

RFC, WMC, and DIT
Two commercial projects
Property based analysis
domain knowledge of
experts

Evaluation on the basis of the threshold values of OO
metrics was done. The study showed that the influence
of DIT on defect proneness was between 10-33% for a
given value of 1-3, when the value of RFC crosses 100
it causes more defects. No faults are caused when the
value of WMC lies between 25 and 60.

This study is based only on three metrics and we see
that there is a lack of details of fault datasets as well.

Elish et. al.
[35].
Fault
Proneness in
package
level

Martin, MOOD, and CK
metrics suites
Eclipse project
Spearman’s correlation
and multivariate
regression

On comparative evaluation of three package level
metrics (i.e., Martin, MOOD and CK metric suites), it
was found that Martin metrics suite is more accurate
than the MOOD and CK suites for fault prediction.

A few more case studies are needed to properly validate
this finding.

Singh and
Verma [36].
Fault
prediction

All CK metrics
Two version of iText,
a JAVA-PDF library
software
J48 and Naïve Bayes

Some OSS (open source projects) was used for
evaluation of CK metric suite for fault prediction. It was
found that fault proneness of the software was well
indicated by CK metrics.

The use of some commercial tools in the collection fo

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1273

the fault dataset leads to an uncertainty in accuracy
limiting the evaluation results.

Chowdhury
and
Zulkernine
[37].

Prediction
of
vulnerability

Complexity, coupling and
cohesion metrics (CCC
metrics)

Mozilla Firefox

Decision tree, Naïve Bayes,
random forest, and logistic
regression

Vulnerability prediction of OO metrics was evaluated.
Results showed that vulnerability prediction can be
made with the use of CCC, and this was irrespective of
the prediction technique used.

The vulnerability prediction of only a single metrics i.e.,
CCC metrics have been evaluated. It needs further
evaluation of other metrics for vulnerability.

Dallal and
Briand [38].
Early stage
fault
prediction

Connectivity based object
oriented class cohesion
metrics
Four open- sources
software projects
Correlation and principal
component analyses,
logistic regression

It showed that with a lower value of cohesion we tend
to get more faults. Path-connectivity cohesion metrics
showed a greater promise than most of the cohesion
metrics.
If metrics have two or more features that are similar,
these features tend to get merged by the metric,
rendering it difficult to discriminate which attribute is
expected to be accessed by a method, since the methods
of same types are being called.

Rathore and
Gupta [39].

Fault
prediction

18 OO Metrics
6 Releases of PROP
dataset from PROMISE
repository
Spearman correlation,
logistic and linear
regression

Individual evaluation of various OO metrics along with
an evaluation in combination with other metrics was
made. Results showed that classes with high coupling
tend to show a higher degree of fault proneness. There
is no relevance of Cohesion and Inheritance metrics in
predicting fault proneness.

The utility of the proposed methodology needs to be
established properly by more datasets.

Rathore and
Gupta [40].
Fault
Prediction

 18 OO metrics
5 softwares with their 16
releases from PROMISE
repository
Spearman Correlation,
logistics and linear
regression

Fault prediction capabilities of OO metrics over
multiple releases of software was validated by this
study. It showed that with the exception of cohesion
metric, all the considered metrics significantly predicted
faults.
More case studies are needed to establish the
usefulness of the proposed methodology.

Peng et al.
[41].
Software
Fault
prediction.

CK, Martin’s, QMOOD,
extended CK metrics
suites, complexity
metrics, and LOC

10 PROMISE project
datasets with their 34
releases

J48, logistics regression,
Naïve Bayes, decision
table, SVM, and Bayesian
network

This study helped determine a subset of metrics that
show a promising usefulness for fault prediction. An
evaluation of top five frequently used software metrics
was done and it was found that they produced
comparable results of fault prediction to the results that
were produced by using full set of metrics.

The models for fault prediction comprised of all, filter
and top 5 metrics only. This does not take into account
the fact the possibilty of other combination of software
metrics. There has been no analysis of the data
distribution while exercising the statistical test.

Process
Metrics
Graves et al.

Change history
A legacy system written
in C

Age and change history metrics were evaluated for fault
prediction. It was found that the better predictor was
numbers of changes to the module whereas when

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1274

[42].
Predicting
number of
faults

Generalized linear models predicting the number of fault is concerned number of
developers was of almost no help at all.
The evaluation experiment used just one software project,
and as far as evaluation of the software metric is
concerned no separate and distinct fault prediction model
was built.

Nikora and
Munson
[43].
Fault
Prediction

Source code metrics,
change metrics
Darwin System
Principle component
Analysis

A new method for selecting significant metrics for fault
prediction was defined. Results showed an enhanced
and high quality fault prediction models were possible
with these new defined metrics.

Here also we see a lack of comparison analysis and a
lack of distinctive and separate fault prediction model.

Hassan [44].
Prediction
of Faults

Change complexity
metrics
6 open source projects
Linear regression and
statistical test

Code change process was used as a base for complexity
metrics. It was found that in comparison to traditional
software metrics change complexity metrics were a
better predictors of fault proneness.

However, the proposed metrics have not been
substantiated by any theoretical validation. This
prediction methodology stands on the validations given
by very small number of fault datasets.

Bird et
al.[45].
Prediction
of software
failures

Socio- Technical
networks metrics
Windows vista and the
ECLIPSE IDE
Principal component
analysis and logistic
regression

Combined socio-technical metrics were investigated for
their influence on fault prediction. The socio-technical
metrics seemed to produce better recall values in
comparison to dependency and contribution metrics.

It has a limited proof as the number of case studies were
low. A higher number of case studies are required to
ascertain its usefulness..

Nachiappan
et al. [22].
Prediction
of defect-
prone
components

Change bursts suite
Windows Vista
Stepwise regression

Capabilities of change metrics were studied for fault
prediction. It showed that change burst metrics provide
excellent defect predictions.

There is a lack of thoroughness as far as evaluation and
validation of the results are concerned.

Mastsumoto
et al. [24].
Fault
Prediction

Developer metric suite
Eclipse Project dataset
Correlation and linear
regression analysis

Influence of developer features on fault prediction was
studied. The conclusion was that developers metrics make
good predictors of defects.

There is a lack of validation of proposed metrics, with
only a single software project being used for evaluation
experiments.

Krishnan et
al. [46].

Prediction
of fault
prone files.

Change metrics suite
Three releases of Eclipse
J48 algorithm

Change metrics over multiple releases of the software
project were evaluated for fault prediction. Showing that
all change metrics worked as nice predictors of defects.

However again just a single fault prediction technique
has been used for the validation of the results. Only one
dataset over three releases were used for the studying
software fault prediction.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1275

Devine et al.
[47].
Faults
Prediction

Various source code and
change metrics
Poly Flow a suite of
software testing tools
 Spearman correlation

A componenet level investigation of the association of
software faults with other metrics was done. Results
indicated that with the exceptions of average file churn
metrics and average complexity metrics, all other metrics
showed a positive correlation with defects.

For the proposed methodology to be established, a higher
number of case studies need to be performed.

Ihara et al.
[48].
Bug-fix
prediction

21 variables of base,
status, period and
developer metrics
Eclipse project
Regression analysis

A model using many software metrics for bug-fix
prediction was developed. It established the all
importance of the base metrics while the building and
formulation of the model.

The validation was based on the evaluation and study of
a single fault prediction technique, this was done using
only one software with a small timeframe of 3 months of
releases to its credit.

Rahman and
Devanbu
[49].
Defect
prediction

14 process metrics,
Various code metrics. 12
projects developed by
Apache
Logistic regression, J48,
SVM and Naïve Bayes

For this purpose combined capability of process and code
metrics for fault prediction was studied, with a result that
process metrics almost always outperformed code
metrics.

The accuracy is not well ascertaind as commercial tools
have been used to calculate code. The results are not
based on exhaustive evaluation.

Ma et al.
[50].
Fault
proneness

Requirement metrics and
design metrics
CMI, PCI
Naïve Bayes, AdaBoost,
bagging, random forest,
logistic regression

Requirement metrics were evaluated for fault prediction
for the first time. Results indicated that if the requirement
metrics were combined with design metrics the fault
prediction capabilities showed a marked improvement.

A limited number ie., a couple of datasets were used for
evaluation studies of considered software metrics. No
analysis of distribution of data for statistical tests was
done.

Wu et al.
[51].
Fault
prediction

8 developer metrics, 22
process and product
metrics
8 open source Java
projects
Principle component
analysis

The influence of quality of developer on software fault
prediction was evaluated. The result indicated
improvementFound that the combination of developer,
process, and product metrics produced improved fault
prediction results.

The methodology needs to be evaluated with more
datasets of different domains for the purpose of
validation..

Xia et al.
[52].
Faults
Prediction

Code metrics and
process metrics
Tracking telemetry and
control (TT and C)
software
Improved PSO and
optimized SVM

A Selection approach was proposed for useful software
metrics for fault prediction. Results indicated that out of
number of code and process metrics used, CM, MMSLC,
and HM metrics showed a significant influence on fault
prediction.

With only a couple of fault datasets being used for the
purpose of validation of the results, the selection
approach which has been proposed is based on

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1276

inadequate validation to establish its applicability.

Other
metrics
Zhang [53].
Defect
Prediction

LOC
Three versions of the
Eclipse system (2.0, 2.1
and 3.0), 9 NASA
projectsSpearman
correlation, multilayer
perceptron, logistics
regression, Naïve Bayes,
decision tree

A relation between LOC
and software was analyzed. defects. Results showed that
a weak but positive relationship exists between LOC and
defects. 20% of the largest files are responsible for
62.29% prelease defects and 60.62% post-release
defects.

However this study too
is based on just one metric (LOC). The domain of data
has not been analyzed for the statistical tests.

Rana et al.
[54].
Number of
defects
prediction

Sotware Science metrics
(SSM)
KCI dataset
Bayesian, decision tree,
linear regression,
support vector regression

Effectiveness of SSM metrics in classification of
software modules as defective or defect free was
investigated. Its performance for identification of number
of defects prediction was not up to mark.

Validation of results has been based on a very small
dataset and concerned metrics' correlation with fault
proneness has not been evaluated.

Mizuno and
Hata [55].
Fault prone
module
detection

Complexity and text
feature metrics
Three versions of the
Eclipse System (2.0, 2.1
and 3.0)
Logistic regression

A number of complexity and text metrics were evaluated
for fault prediction. Results indicate the better
performance of complexity metrics over text metrics for
the purpose of fault prediction.

The study hasn't been substantiated by providing the
details of collection of data and its preprocessing. The
metrics has also not been validated theoretically.

3. Discussion

 Achievement of a predecided goal with an ensured high quality of software is a formidable

challenge. To this end quality assurance cannot depend upon traditional testing approaches which fall

short due to the limited opportunities of user testing in this approach during the development of

software. The differing results seem to arise due to contest between and nature of data compiled. Hall

et al [63] submitted that models between the context may affect prediction result.

The correlation between fault proneness and size metric (LOC) and fault proneness has been

investigated many times [53][56] Ostrand et a.[57] came up with the model for prediction of fault

density with the use of LOC metrics and came to the result that a significant correlation between LOC

metric and prediction of fault density exists. Zhang [53], in a different study came to the conclusion

that sufficient statistical evidence existed to show that a weak relationship though positive, between

LOC and defects does exist. But Rosenberg [59] gave a contrary opinion pointing out that though,

there exists a relationship between defect density and LOC, it is negative. Further, they came to a

conclusion that LOC in combination with other software metrics becomes the most pertinent feature

in software fault prediction. In another study, Emam and Melo [28] demonstrated that a simple

relationship did exist between class size and faults, they further went on to demonstrate that class size

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1277

had no threshold effect on the occurrences of faults. Various researchers [14][17][59][60] have

examined the use of complexity metrics for building fault prediction models. The predictive

capabilitis of complexity metrics were confirmed by some of the studies [59][60], while others

reported that they did not perform so well [61]. In a study, Olague et al. [59] came up with the

conclusion that the complexity metric shape gave a better result in prediction of faults. Further, it

became evident that less commonly used metrics such as AMC and SDMC outperformed metrics like

LOC and WMC as good predictors of fault proneness. Zhouetal.[60] reported that when used in a

stand alone way complexity metrics exhibited a predictive ability that was average. But their

explanatory ability increased formidably when they were used in combination with LOC metric. The

evaluation of how appropriate are process metrics for fault proneness has been done through multiple

studies [47][62]. After investigating many process metrics Devine et al. [47] found a positive

correlation between most of the process metrics and defects. In a comparative study between many

process metrics in one hand and code metrics on another, Moser et al.[62] came to the conclusion that

process metrics have the capability to differentiate faulty software modules from non faulty ones and

perform better in fault prediction when compared to source code metrics. However, Hall et al. [63]

came to the conclusion that process metrics do not perform better in comparison to OO metrics. It has

been observed that the results do differ when studies are performed on a set of metrics. this probably

happens because the context in which data is collected are varied and it also depends on the varied

usage of dependent variable (such as fault density, fault proneness, pre-release faults, and post-release

faults) during investigation and the implication of linear relationship.

4. Conclusion

We see a strong coupling of established metrics with size measures, like lines of code Complexity

metrics and in turn size measures seem to have a certain amount of predictive capabilities. OO

(Object-oriented) metrics perform better than complexity and size metrics when compared for

prredicting faults and defects. Though showing a certain corelation to size they encompass certain

some additional properties as well. Static code metrics, just as complexity, size and OO metrics, are

suited for observing a particular version of software, but with a descending accuracy with each

software iteration. Hence, they are not suitable for highly iterative, post-release software, where the

main cause of faults is because of the development process and not so much because of the properties

of size and design. In such cases and environment, we find a better performance of process metrics in

comparison to static code metrics as far as the accuracy of prediction of fault is concerned. Most of

the studies performed for fault prediction capabilities used size, complexity and OO metrics (70%),

whereas process metrics, with apparently high possibility, were used less often (23%). A tendency for

researchers and scientist from the industry to use process metrics more was seen, whereas academia

based researchers seemed to prefer OO metrics. This might be so, probably because the process

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1278

metrics are better performers when used for industrial purposes in comparison to static code metrics:

and process metrics fulfill the industrial need better. Hence we suggest and appeal to researchers to

take up process metrics in larger numbers for future studies. Further, seemingly one of the three

following programming languages was frequently used, i.e. C++ (35%), Java (34%) and C (15%).

Other OO languages (e.g. C#) should also be considered in investigating the performance of metrics.

Since there seems to be a variation affecting the performance of metrics when different programming

languages are used, impetus should be laid on their use in further investigations.

References

[1] Gartner Says Worldwide It Spending on Pace to Reach $3.8 Trillion in 2014. Accessed:
September 21, 2018. [Online]. Available: http://www.gartner.com/newsroom/id/2643919

[2] Arar, Ö.F. and Ayan, K., 2015. Software defect prediction using cost-sensitive neural
network. Applied Soft Computing, 33, pp.263-277.

[3] Huda, S., Alyahya, S., Ali, M.M., Ahmad, S., Abawajy, J., Al-Dossari, H. and Yearwood, J.,
2018. A Framework for Software Defect Prediction and Metric Selection. IEEE access, 6,
pp.2844-2858.

[4] Pelayo, L. and Dick, S., 2007, June. Applying novel resampling strategies to software defect
prediction. In Fuzzy Information Processing Society, 2007. NAFIPS'07. Annual Meeting of the
North American (pp. 69-72). IEEE.

[5] Yadav, H.B. and Yadav, D.K., 2015. A fuzzy logic based approach for phase-wise software
defects prediction using software metrics. Information and Software Technology, 63, pp.44-
57.[6] C. Catal and B. Diri, ‘‘Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem,’’ Inf. Sci., vol. 179, no. 8, pp. 1040–
1058, 2009.

[7] Zhao, M., Wohlin, C., Ohlsson, N. and Xie, M., 1998. A comparison between software design
and code metrics for the prediction of software fault content. Information and Software
Technology, 40(14), pp.801-809.

[8] Bansiya, J. and Davis, C.G., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on software engineering, 28(1), pp.4-17.

[9] Bundschuh, M. and Dekkers, C., 2008. The IT measurement compendium: estimating and
benchmarking success with functional size measurement. Springer Science & Business Media.

[10] McCabe, T.J., 1976. A complexity measure. IEEE Transactions on software Engineering, (4),
pp.308-320.

[11] Halstead, M.H., 1977. Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., New York, NY.

[12] Chidamber, S.R. and Kemerer, C.F., 1994. A metrics suite for object oriented design. IEEE
Transactions on software engineering, 20(6), pp.476-493.

[13] Harrison, R., Counsell, S.J. and Nithi, R.V., 1998. An investigation into the applicability and
validity of object-oriented design metrics. Empirical Software Engineering, 3(3), pp.255-273.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1279

[14] Li, W. and Henry, S., 1993. Object-oriented metrics that predict maintainability. Journal of
systems and software, 23(2), pp.111-122.

[15] Lorenz, M. and Kidd, J., 1994. Object-oriented software metrics (Vol. 131). Englewood Cliffs:
Prentice Hall.

[16] Bansiya, J. and Davis, C.G., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on software engineering, 28(1), pp.4-17.

[17] Briand, L., Devanbu, P. and Melo, W., 1997, May. An investigation into coupling measures for
C++. In Proceedings of the 19th international conference on Software engineering(pp. 412-421).
ACM.

[18] Tahir, A. and MacDonell, S.G., 2012, September. A systematic mapping study on dynamic
metrics and software quality. In Software Maintenance (ICSM), 2012 28th IEEE International
Conference on (pp. 326-335). IEEE.

[19] Yacoub, S.M., Ammar, H.H. and Robinson, T., 1999. Dynamic metrics for object oriented
designs. In Software Metrics Symposium, 1999. Proceedings. Sixth International (pp. 50-61).
IEEE.

[20] Arisholm, E., Briand, L.C. and Foyen, A., 2004. Dynamic coupling measurement for object-
oriented software. IEEE Transactions on software engineering, 30(8), pp.491-506.

[21] Mitchell, A. and Power, J.F., 2003. Toward a definition of run-time object-oriented metrics.

[22] Vishwanath, K.V. and Nagappan, N., 2010, June. Characterizing cloud computing hardware
reliability. In Proceedings of the 1st ACM symposium on Cloud computing(pp. 193-204). ACM.

[23] Nagappan, N. and Ball, T., 2005, May. Use of relative code churn measures to predict system
defect density. In Proceedings of the 27th international conference on Software engineering (pp.
284-292). ACM.

[24] Matsumoto, S., Kamei, Y., Monden, A., Matsumoto, K.I. and Nakamura, M., 2010, September.
An analysis of developer metrics for fault prediction. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering (p. 18). ACM.

[25] Jiang, Y., Cukic, B. and Ma, Y., 2008. Techniques for evaluating fault prediction
models. Empirical Software Engineering, 13(5), pp.561-595.

[26] Premraj, R. and Herzig, K., 2011, September. Network versus code metrics to predict defects: A
replication study. In Empirical Software Engineering and Measurement (ESEM), 2011
International Symposium on (pp. 215-224). IEEE.

[27] Tang, M. H., Kao, M. H., & Chen, M. H. (1999)."An empirical study on object-oriented metrics.
In Proceedings of the 1999 international workshop on Software metric symposium (pp. 242-249).
IEEE.

[28] El Emam, K., Melo, W. and Machado, J.C., 2001. The prediction of faulty classes using object-
oriented design metrics. Journal of Systems and Software, 56(1), pp.63-75.

[29] Briand, L.C., Bunse, C. and Daly, J.W., 2001. A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs. IEEE Transactions on Software
Engineering, 27(6), pp.513-530.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1280

[30] Shanthi, P.M. and Duraiswamy, K., 2011. An empirical validation of software quality metric
suits on open source software for fault-proneness prediction in object oriented system. European
journal of Scientific Research, 5(2), pp.168-181.

[31] Li, W. and Shatnawi, R., 2007. An empirical study of the bad smells and class error probability
in the post-release object-oriented system evolution. Journal of systems and software, 80(7),
pp.1120-1128.

[32] Shatnawi, R. and Li, W., 2008. The effectiveness of software metrics in identifying error-prone
classes in post-release software evolution process. Journal of systems and software, 81(11),
pp.1868-1882.

[33] Kpodjedo, S., Ricca, F., Galinier, P. and Antoniol, G., 2009, March. Recovering the evolution
stable part using an ecgm algorithm: Is there a tunnel in mozilla?. In Software Maintenance and
Reengineering, 2009. CSMR'09. 13th European Conference on (pp. 179-188). IEEE.

[34] Selvarani, R., Nair, T.G. and Prasad, V.K., 2009, May. Estimation of defect proneness using
design complexity measurements in object-oriented software. In 2009 International Conference
on Signal Processing Systems (pp. 766-770). IEEE.

[35] Elish, K.O. and Alshayeb, M., 2011. A classification of refactoring methods based on software
quality attributes. Arabian Journal for Science and Engineering, 36(7), pp.1253-1267.

[36] Singh, P. and Verma, S., 2012, May. Empirical investigation of fault prediction capability of
object oriented metrics of open source software. In Computer Science and Software Engineering
(JCSSE), 2012 International Joint Conference on(pp. 323-327). IEEE.

[37] Chowdhury, I. and Zulkernine, M., 2011. Using complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities. Journal of Systems Architecture, 57(3), pp.294-313.

[38] Al Dallal, J. and Briand, L.C., 2010. An object-oriented high-level design-based class cohesion
metric. Information and software technology, 52(12), pp.1346-1361.

[39] Rathore, S.S. and Gupta, A., 2012, September. Investigating object-oriented design metrics to
predict fault-proneness of software modules. In Software Engineering (CONSEG), 2012 CSI
Sixth International Conference on (pp. 1-10). IEEE.

[40] Rathore, S.S. and Gupta, A., 2012, December. Validating the effectiveness of object-oriented
metrics over multiple releases for predicting fault proneness. In Software Engineering
Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 350-355). IEEE.

[41] He, P., Li, B., Liu, X., Chen, J. and Ma, Y., 2015. An empirical study on software defect
prediction with a simplified metric set. Information and Software Technology, 59, pp.170-190.

[42] Graves, T.L., Karr, A.F., Marron, J.S. and Siy, H., 2000. Predicting fault incidence using
software change history. IEEE Transactions on software engineering, 26(7), pp.653-661.

[43] Munson, J.C., Nikora, A.P. and Sherif, J.S., 2006. Software faults: A quantifiable
definition. Advances in Engineering Software, 37(5), pp.327-333.

[44] Hassan, A.E., 2009, May. Predicting faults using the complexity of code changes. In Proceedings
of the 31st International Conference on Software Engineering (pp. 78-88). IEEE Computer
Society.

[45] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P. (2009).
Fair and balanced?: bias in bug-fix datasets. Paper presented at the Proceedings of the the 7th

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1281

joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering.

[46] Krishnan, S., Strasburg, C., Lutz, R.R. and Goševa-Popstojanova, K., 2011, September. Are

change metrics good predictors for an evolving software product line?. In Proceedings of the 7th
International Conference on Predictive Models in Software Engineering (p. 7). ACM.

[47] Devine, T.R., Goseva-Popstajanova, K., Krishnan, S., Lutz, R.R. and Li, J.J., 2012, April. An

empirical study of pre-release software faults in an industrial product line. In Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on (pp. 181-190).
IEEE.

[48] Ihara, A., Kamei, Y., Monden, A., Ohira, M., Keung, J.W., Ubayashi, N. and Matsumoto, K.I.,

2012, December. An Investigation on Software Bug-Fix Prediction for Open Source Software
Projects--A Case Study on the Eclipse Project. In Software Engineering Conference (APSEC),
2012 19th Asia-Pacific (Vol. 2, pp. 112-119). IEEE.

[49] Rahman, F. and Devanbu, P., 2013, May. How, and why, process metrics are better. In Software

Engineering (ICSE), 2013 35th International Conference on (pp. 432-441). IEEE.

[50] Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for cross-company software
defect prediction. Information and Software Technology, 54(3), 248-256.Mahalanobis, P. C.
(1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences
(Calcutta), 2, 49-55.

[51] Wu, Y., Yang, Y., Zhao, Y., Lu, H., Zhou, Y. and Xu, B., 2014, June. The influence of developer
quality on software fault-proneness prediction. In Software Security and Reliability (SERE), 2014
Eighth International Conference on (pp. 11-19). IEEE.

[52] Xia, H., Tan, W., Miladinovic, N. and Yang, S., LSI Corp, 2014. Systems and methods for data
detection using distance based tuning. U.S. Patent 8,699,167.

[53] Zhang, H., 2009, September. An investigation of the relationships between lines of code and
defects. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference on (pp.
274-283). IEEE.

[54] Rana, Z.A., Shamail, S. and Awais, M.M., 2009, May. Ineffectiveness of use of software science
metrics as predictors of defects in object oriented software. In Software Engineering, 2009.
WCSE'09. WRI World Congress on (Vol. 4, pp. 3-7). IEEE.

[55] Hata, H., Mizuno, O. and Kikuno, T., 2010. Fault-prone module detection using large-scale text
features based on spam filtering. Empirical Software Engineering, 15(2), pp.147-165.

[56] Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J. and Shen, B., 2011. A practical comparison of
de novo genome assembly software tools for next-generation sequencing technologies. PloS
one, 6(3), p.e17915.

[57] Ostrand, T.J., Weyuker, E.J. and Bell, R.M., 2005. Predicting the location and number of faults
in large software systems. IEEE Transactions on Software Engineering, 31(4), pp.340-355.

[58] Rosenberg, J., 1997. Some misconceptions about LOC. In Intl. Symp. on Software Metrics (pp.
137-143).

[59] Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.(2007): Empirical Validation of
Three Software Metrics Suites to Predict FP of Object-Oriented Classes Developed Using Highly

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1282

Iterative or Agile Software Development Processes. IEEE Trans. Software Eng. No.33, pp.402—
419.

[60] Zhou, Y., Xu, B. and Leung, H.(2010): On the ability of complexity metrics to predict fault-
prone classes in object-oriented systems. The Journal of Systems and Software No. 83, pp. 660–
674.

[61] Binkley, A.B. and Schach, S.R., 1998, April. Validation of the coupling dependency metric as a
predictor of run-time failures and maintenance measures. In Proceedings of the 20th
international conference on Software engineering (pp. 452-455). IEEE Computer Society.

[62] Moser, R., Pedrycz, W. and Succi, G., 2008, May. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In Proceedings of the 30th
international conference on Software engineering (pp. 181-190). ACM.

[63] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S., 2012. A systematic literature review
on fault prediction performance in software engineering. IEEE Transactions on Software
Engineering, 38(6), pp.1276-1304.

[64] Rathore, S.S. and Kumar, S., 2017. A study on software fault prediction techniques. Artificial
Intelligence Review, pp.1-73.

International Journal of Management, Technology And Engineering

Volume 8, Issue XI, NOVEMBER/2018

ISSN NO : 2249-7455

Page No:1283

