

Mining Frequent utility sequential patterns in

Progressive Databases

K.M.V. Madan Kumar1*, B. Srinivasa Rao 2

1Research scholar, ANU, Guntur & Department of IT, TKRCollege of Engineering

&Technology, Hyderabad.
2Research Guide, Acharya Nagarjuna University, Guntur.

*Corresponding author

ABSTRACT

Sequential pattern mining is one of the most important aspects of data mining world and has

a significant role in many applications like market analysis, biomedical analysis, weather

forecasting etc. in the category of mining sequential patterns the usage of progressive

database as an input database is relatively new and has a wide impact in decision-making

system. In progressive sequential pattern, we discover the frequent sequences progressively

with the help of period of Interest. As the traditional approaches of frequency based

framework are not much more informative for decision making, in recent effort utility

framework has been incorporated instead of frequency. This addressed many typical business

concerns such as profit value associated with each pattern. In this paper, we applied the

concept of frequent utility over the progressive database and discovered the sequential

pattern efficiently. To do so we proposed an algorithm called U-DirApp which works

progressively with the help of a quantitative progressive database. We conducted substantial

experiments on the proposed algorithm and proved that this process performs well.

Keywords: Frequent Utility Sequences, Sequential Pattern Mining, Progressive Sequential

Pattern, and Period of interest.

1. INTRODUCTION

Mining sequential patterns is an important issue in the community of data mining. In time

ordered-based critical event scenario, sequential pattern mining has a significant role. Such as

mining weblogs, consumer behavior in retail business and gene analysis in bioinformatics.

For example mining, sequential patterns are widely used in the retail business to predict the

buying patterns of the customers for stock maintenance. In traditional sequential pattern

mining, the sequence patterns will be selected based on the frequency/support framework and

treated as significant. The pattern which has more or equivalent frequency/support than the

user-defined minimum support will be treated as a frequent sequence. Different algorithms

already proposed previously [10, 14, 5] for sequential pattern mining has used the concept of

downward closure property popularly known as Appriori Property [1].

 Most of the sequential patterns which are found as frequent by traditional algorithms

are not much more informative for decision making as they do not consider the business

value and impact. Because of low frequency, some truly interesting patterns may not be

considered as frequent in some scenarios such as fraud detection. For example in the home

appliance business selling a LED TV gives us more profit than selling a small induction

stove. But the frequency of purchasing a TV in smaller than the induction stove. It leads us to

be filtered the TV from frequent items as the frequency is much low. In another case, the

transfer of a large amount of money to an unauthorized overseas account may occur very

rarely (once in thousands) but have a larger impact on the fraud detection. The traditional

support/frequency framework will not handle properly the above-mentioned case.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1166

Fig 1(a) Quality Table

Fig 1(b) Quantitative Progressive Sequential Data Base

To tackle the above-said issue, frequent utility sequential pattern mining was introduced [13]

where we use utility for finding out interesting patterns instead of frequency. Now let us

discuss this frequent utility sequential pattern mining with some example. In the online retail

store, the items and their profits (quality) were shown in Fig 1(a). The Fig 1(b) shows the

different shopping q-sequences with their quantities: each q-sequence was formed by

different q-transactions by customers and each q-transaction consisting of one or more

elements (items) associated with their quantity. For example, the q-S01 in Fig 1(b), (2A)(1B)

(2C) (1A2D) (2B) (3C) (1B2D) consists of seven itemsets with their quantity. E.g. the

quantity of A is 1. The Fig 1(b) above represents this itemsets which are purchased by the

customers at different timestamps. Here the timestamps are depending upon the behavior of

the database what we have taken. It may range from one second, one minute, and one day to

any duration soon and so forth. As per the concept of frequent utility pattern, the utility of the

itemset will be the total profit (i.e. it’s purchased quantity times its profit). And we can define

the utility of an itemset is the sum of the utilities of all its items. Generally, the utility of a

sequence will have different values because each item will contain different utility values in a

sequence. For example the utility of <AD> in sequence 1 will have two different values i.e.

(2*1 + 2*2) and (1*1+ 2*2). But we will consider the highest value i.e. (2*1 + 2*2) = (2+4)

=6 instead of 5. So the utility of <AD> in the database is {

{6,5}+{}+{7}+{6}+{3}+{}}={6+7+6+3}=22.

 The frequent utility sequential pattern mining is very much different than the regular

sequential pattern mining process and frequent utility itemset mining. In,frequent utility

concepts downward closer property no longer holds because the subset of a frequent itemset

may become infrequent and vice versa. So we cannot apply the traditional pruning strategies

on directly on this. To solve this problem Junfu.Yin.et.al [16] proposed an algorithm USpan

where they are Lexicographic Q- Sequence Tree. For mining sequential pattern mining in

progressive databases Huary.et.al [15] proposed an algorithm DirApp where they used

timestamp process and appended the item from one time stamp to another in a flat structure

with respect to the period of Interest. For omitting the items which are obsolete. Here we

have merged the concept of POI and frequent utility and extended DirApp[15] to U-DirApp

which performed well. The process will be as follows.

Step 1:- By taking the concepts of quantity and quantity into consideration, we built the

utility based sequences, to define the problem.

Step 2:- A complete U-DirApp table was constructed by appending the items or item sets

from one time stamp to another time stamp in a flat structure along with this timestamp and

utilities.

Step 3:- With the use of U-DirApp table we found out the sequences whole utility is more

than user defined utility (𝜀).

Step 4:- which constructing U-DirApp table, we used the concept of a period of Interest to

eliminate the items with this utility; whose time stamp is beyond the POI as an obsolete item.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1167

The experiments show that the proposed U-DirApp algorithm works efficiently for finding

the frequent utility sequential patterns in progressive databases. Section 2 talks about the

previous work happened on frequent utility and progressive databases. The problem of

mining sequential patterns in the progressive database was defined in Section 3. Section 4

deals with Implementation part of U-DirApp. Experimental results were discussed in section

5. Section 6 concludes the work.

2. LITERATURE SURVEY

2.1 Utility Based Itemset Mining

Utility itemset Mining is also known as frequent utility pattern mining was introduced in

[13]. In this, each and every item was linked with two components known as an internal

utility (i.e. quantity) and external utility (i.e. Quality or profit). In,frequent utility itemset

mining, we will mine frequent utility itemsets or patterns whose utility is greater than the

user specified minimum utility. In utility based pattern mining, the downward closure

property will not hold. So the process of mining frequent utility itemset mining is much more

complicated than the traditional itemset mining.

 To remedial this problem, in 2004 a systematic approach called as UMining was

proposed by some authors. But UMining could not mine the complete set of frequent utility

patterns. A two-phase algorithm was proposed [8] which works on the principle of

transaction weighted downward closure property which works faster than UMining. With an

incremental procedure, IHUP [3] was proposed for frequent utility itemset mining. This

IHUP [3] was faster than [8] as it omits multiple scanning of the database. Later with the help

of UP-Tree, UP-Growth was proposed and it was much efficient than IHUP because it can

reduce the number of interesting patterns, whom could not be pruned by IHUP.

2.2 Mining Sequential Patterns by Utility Framework

Sequential Pattern was first discovered by R.Agrawal.et.al[1] and later it became a popular

topic with a quite a good number of researches such as SPAM[5], SPADE[14] and Pre-fix

Span[10] which works on the basis on frequency or support mechanism. This traditional

approach of support based mining process often resulting in a number of patterns, under

which some of them may not be so interested in a business point of view. Here we may filter

some sequences which may have less support than the user-defined minimum support, which

may lead us more profits [6].

The Considerations of utility in sequential pattern mining will solve the problem and the

research started very recently. For frequent utility, sequential patterns in mobile applications

were addressed in UMSP [11]. Here location identified was linked with each itemset in a

sequence, so the utility of a mobile sequential pattern will be considered a single value in

UMSP [11] and UMSP will traverse MTS- tree to mine the patterns. However there are some

constraints, due to that, it can handle very limited and specific sequences.

 In weblog sequences with utility framework, an algorithm was specifically proposed

in [2]. Two tree structures UWAS tree and IUWAS-Tree were traversed in this algorithm.

Generally, pattern may contain different utility values, and here the algorithm considers the

maximum value of utility with the help of UWAS and IUWAS- trees to specify the utility of

a pattern. But this algorithm will be suitable only for complex sequences because this cannot

be supported for the sequences having elements with multiple items.

 The traditional sequential patterns mining process was extended for utility sequential

patterns in [4] by UI and US. In this UI and US the Problem definition was so specific and

not generalized for frequent utility sequence analysis. To remedy the problem in [16] the

authors proposed USPAN algorithm where they used Lexicographic Q- Sequence tree for

construction of utility based sequences and two pruning strategies for finding out frequent

utility sequential patterns(width pruning and depth pruning).

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1168

 In [15] Huang.et.al proposed DirApp algorithm for finding out frequent sequences in

progressive databases. Where they used the concepts of Period of Interest and time stamps.

The Period of Interest (POI) is a sliding window protocol and advances progressively along

with the time stamp. It progressively updates each sequence in a flat structure and

accumulates the frequencies of candidate sequential patterns from one POI to another.

3. PROBLEM DEFINITION

Definition 1

(Q-itemset Containing) Given two q-itemsets 𝑙𝑎 = [(𝑖𝑎1
, 𝑞𝑎1

) (𝑖𝑎2
, 𝑞𝑎2

) ….. (𝑖𝑎𝑛
, 𝑞𝑎𝑛

)]

𝑙𝑏 = [(𝑖𝑏1
, 𝑞𝑏1

) (𝑖𝑏2
, 𝑞𝑏2

) ….. (𝑖𝑏𝑚
, 𝑞𝑏𝑚

)],𝑙𝑏 contains 𝑙𝑎iff there exist integers 1 ≤ j1 ≤ j2 ≤

... ≤ jn ≤ m such that 𝑖𝑎𝑘
 = 𝑖𝑏𝑗𝑘

∧𝑞𝑎𝑘
 = 𝑞𝑏𝑗𝑘

 for 1 ≤ k ≤ n, denoted as 𝑙𝑎⊆𝑙𝑏.

Definition 2

 (Q-sequence Containing) Given two q-sequences s =〈𝑙1 , 𝑙2 , … . . 𝑙𝑛〉 and s’

=〈𝑙′1 , 𝑙′2 , … . . 𝑙′𝑛〉, wesay s' contains s or s is a q-subsequence of s' if there exist integers 1 ≤

j1 ≤ j2 ≤ ... ≤ jn ≤ n' such that 𝑙𝑘⊆𝑙′𝑗𝑘 for 1 ≤ k ≤ n, denoted as s ⊆s'.

Definition 3

(Length and Size) A (q-) sequence is called k (q-) sequence i.e. its length is k if there are k-

(q) items in the (q-)sequence; the size of a (q-)sequence is the number of (q-)itemsets in the

(q-)sequence.

Definition 4

(Matching) Given a q-sequence s = 〈(𝑞1 𝑠1 ,)(𝑞2 𝑠2 ,) … . (𝑞𝑛 𝑠𝑛)〉 and a sequence t

=〈𝑡1𝑡2 … . 𝑡𝑚〉. s matches 𝑡if𝑛 =𝑚 and 𝑠𝑘 ,= tk for 1 ≤ k ≤ n, denoted as t ∼ s.

Definition 5

 (Q-item Utility) The 𝑞-item utility is the utility of a single q-item (𝑞 𝑖) denoted and defined

as 𝑢(𝑞 𝑖):

𝑢(𝑞 𝑖) = 𝑓𝑢𝑖
(𝑝(𝑖), 𝑞) (1)

 Where 𝑓𝑢𝑖
is the function for calculating q-item utility.

Definition 6

 (Q-itemset Utility) Q-itemset utility is the utility of a q-itemset𝑙 = [(𝑞1 𝑖1)(𝑞2 𝑖2)(𝑞𝑛 𝑖𝑛)]
denoted and defined as

𝑢(𝑙): (𝑙) = 𝑓𝑢𝑖𝑠
(⋃ 𝑢(𝑞𝑗 𝑖𝑗)

𝑛

𝑗=1

) (2)

𝑓𝑢𝑖𝑠
is the function for calculating 𝑞-itemset utility

Definition 7

(Q-sequence Utility) For a q-sequence s =〈𝑙1𝑙2 … . . 𝑙𝑚〉, the q-sequence utility is 𝑢(𝑠):

𝑢(𝑠) = 𝑓𝑢𝑠
(⋃ 𝑢(𝑙𝑗)

𝑚

𝑗=1

) (3)

Where 𝑓𝑢𝑠
 is the utility function for q-sequences.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1169

Definition 8

 (Q-sequence Database Utility) For a utility oriented sequence database 𝑠 =
{〈𝑠𝑖𝑑1, 𝑠1〉, 〈𝑠𝑖𝑑2, 𝑠2〉, … . , 〈𝑠𝑖𝑑𝑟, 𝑠𝑟〉},the q-sequence database utility is 𝑢(𝑠):

𝑢(𝑠) = 𝑓𝑢𝑑𝑏
(⋃ 𝑢(𝑠𝑗)

𝑟

𝑗=1

) (4)

𝑓𝑢𝑑𝑏
is the function for aggregating utilities in the database.

 In the above, utility functions 𝑓𝑢𝑖
, 𝑓𝑢𝑖𝑠

, 𝑓𝑢𝑠
and 𝑓𝑢𝑑𝑏

are all application-dependent, which may

be determined through collaboration with domain experts.

Definition 9

(Sequence Utility) Given a utility-oriented database S and a sequence 𝑡 = 〈𝑡1, 𝑡2, … 𝑡𝑛〉, t’s

utility in q-sequence 𝑠 = 〈𝑙1, 𝑙2, … 𝑙𝑚〉, from 𝑠 is denoted and defined as 𝑣(𝑡, 𝑠),which a

utility is set:

𝑣(𝑡, 𝑠) = ⋃ 𝑢(𝑠′)

𝑠′~𝑡∧𝑠′⊆𝑠

 (5)

 The utility of 𝑡 in 𝑠 is denoted and defined as 𝑣(𝑡),which al so a utility is set:

𝑣(𝑡) = ⋃ 𝑢(𝑡, 𝑠)

𝑠∈𝑆

 (6)

Definition 10

Given an utility oriented database S and a sequence β, we call β is frequent utility sequence

in S or β is a utility sequential pattern in S if utility (β) ≥ user defined utility (s).

Definition 11

Progressive utility sequential pattern mining problem.“Given a user-specified length of

POI and a user-defined minimum support threshold, find the complete set of frequent

subsequences whose occurrence utility are greater than or equal to the minimum utility times

the number of sequences in the recent POI of a progressive utility database.”

4. IMPLEMENTATION

4.1. Utility Candidate set generation by U-DirApp

The main objective of the U-DirApp has to bring up the all the q- sequences in a flat structure

and also assemble the candidate utility sequential patterns along with their corresponding

utility from one POI to another. It also keeps a utility candidate set for each and individual q-

sequence in the given database to store all utility sequential patterns of the candidate with

their utility. U- DirApp generates all combinations of items along with their utility as a utility

candidate elements to support arriving elements. To be given an example, Assuming that the

arriving element consists of(X, Y, Z), the different possible combinations of candidate utility

elements are as follows X, Y, Z,(X, Y),(X, Z),(Y, Z), and (X, Y, Z). If that is the case, U-

DirApp identifies the utility candidate set of the q- sequence based on the sequence ID of the

elements. In order to create the new utility candidate sequential patterns with matching begin

timestamps, U-DirApp adds each combination of the components in the coming data to the

already existed utility candidate set. When the utility candidate sequential patterns come into

sight as a utility sequence of a progressive database the begin timestamp remains timestamp.

Then, U-DirApp places the new utility candidate sequential patterns into the utility candidate

set. Apart from it, the U-DirApp also gathers the utility values of all utility candidate

sequential patterns in another candidate set. U-DirApp eliminates the utility candidate

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1170

sequential patterns along with their utility values as an obsolete, whose begin timestamps are

smaller than the current time minus POI, from utility candidate set. Eventually, U-DirApp

produces frequent utility sequential patterns and omits out obsolete utility candidate

sequential patterns for all q- sequences.

Fig 2 (a) Items with qualtity that Q-S01 has.

Fig 2(b) Utility candidate set for Q-S01

Example 1:-The input database is the similar as reflected in Fig1.The elements formed by q-

sequence q-S01 with their utility values from the corresponding existing POI are shown in

Fig 2(a). It is also noticed that candidate utility sequential pattern for q-S01 is maintained by

U-DirApp is shown in Fig 2(b). The DBp,q at the top of each table explains the database

containing elements from timestamp p to q. U-DirApp stores the element A along with its

corresponding utility at timestamp 1 and stores A as a utility candidate with begin timestamp

1 and utility (Quality*Quantity=1*2), i.e. A1
2, in the utility candidate set. While getting the

element B along with its utility at timestamp 2 to the utility candidate set, U-DirApp joins

with the existing element in the candidate set. U-DirApp joins B2
2 (1*2) to A1

2 to be AB1
4

(2+2)
. In addition, U-DirApp stores B2 at the same time along with its utility value as prefix i.e.

B2
2. The second table in Fig 2(b) shows this process. The shadowed (and underlined at the

same time) candidate patterns represent newly generated candidates. The same process

continues until timestamp 4.When U- DirApp assigns Db1,5 at timestamp 5, the outcome

element is (AD). All combinations of this element along corresponding utility values are

A5
1,D5

4 and (AD)5
5. Even though there is existing A1 in the utility candidate set, U-DirApp

does not change its begin timestamp from 1 to 5 because the utility value of A in timestamp 1

and 5 may be different.Now U-DirApp joins all the elements especially whose timestamp

between 2 & 4 to A1along with their utility values into the q-candidate set. Thus we got BA2
3,

CA4
3

 , and BCA2
5into q-candidate set as shown in the fifth table of Fig 2(b). The same

process is applied to the elements and (AD).So ,D5
4, (AD)5

5, AD1
6, A(AD)1

7, BD2
6, B(AD)2

7,

ABD1
8, AB(AD)1

9, CD4
6, C(AD)4

7, ACD1
8, AC(AD)1

9, BCD2
8, BC(AD)2

9, ABCD1
10 and

ABC(AD)1
11 are inserted into the q- candidate set. After fifth time stamp, the POI goes to

time interval [2, 6]. As reflected in the sixth table in Fig (2b) the q-candidate patterns which

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1171

have the begin timestamp less than 2 should be deleted from the q-candidate set. When U-

DirApp takes DB3, 7 the candidate patterns whose begin timestamp is less than 3 can also be

deleted too.

Fig 2(c) Utility candidate set for all Q-Sequences in Db1,2

4.2 Frequent Utility Sequential Pattern Generation

Now in this section, we will discuss how the frequent utility sequential patterns will be

generated from the utility candidate sequential patterns. Here we should construct the utility

candidate sequential patterns for all the sequences (S01 to S06) shown in Fig1. The process

of construction of utility candidate sequential patterns for the first sequence was discussed

previously in section 4.1. The same procedure will be adapted for all the sequences

mentioned in Fig 1. The next process is identifying the frequent utility sequential patterns

with respect to the time stamps say for example Db1, 2, Db1, 3, Db1, 4, Db1, 5, Db2, 6, Db3,7for all

the sequences and accumulate the total utility of the sequences accordingly.

Algorithm UTI (Item, pi, qi)

1. var UTI;

2. var I1…..In;// Items

3. For (all combinations of items in the ele);

4. If (No of items>1);

5. Find equivalence classes for all 1- q sequences;

6. for each q-[S]

7. UTI (ele) =Max (∑ 𝑝𝑖 ∗ 𝑞𝑖𝑛
𝑖=1);

8. else

9. UTI (ele) = Max (𝑝𝑖 ∗ 𝑞𝑖)

END

Algorithm U-DirApp (Min𝑼𝑻𝑰(𝜺), POI)

1. var PT; // Progressive Table

2. var current Time; // timestamp now

3. var eleSet ; // used to store elements ele

4. while (there is still new transaction);

5. eleSet = read all ele at current Time;

6. ck (currentTime, PT);

7. current Time++ ;

 END

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1172

Algorithm ck (current time, PT)

1. for (each ck of PT in post order);

2. if (ck is null);

3. for (ele of every seq in eleSet);

4. for (all combination of elements in the ele);

5. if (element==label of one of ele.ck);

6. if (seq is in subck.seq_list);

7. Update timestamp of seq to currentTime, UTI (ele);

8. else

9. create a new sequence with current Time, UTI(ele);

10. else

11.create a new subck with element, current Time,UTI(ele);

12. else for (every seq in the seq_list);

13.if (seq.timestamp<= currentTime_POI);

14. delete seq, UTI (el) from seq_list and continue to next seq;

15.if (there is new ele of the seq in eleSet);

16. for (all combination of elements in the ele);

18. if (element is not in ck);

19. if(element==label of one of subck);

20. if (seq is in subck.seq_list);

21. Subck.seq_list. Seq.timestamp= seq.timestamp;

22. else

23. create a new sequence withseq. timestamp,UTI (ele);

24. else

25. Create a new subck with element, seq.timestamp, UTI (ele);

28. if (seq_list.Total UTI (el)>=𝜀);

29. Output the ele as a sequential pattern;

END

Fig 3 (a) (b) (c)

5. EXPERIMENT RESULTS

In this section the execution time of proposed algorithms has been recorded at each time

stamp and then the accumulated time from the first time stamp to existing time stamp was

shown as cumulative execution time. As shown in fig 8 (a),even the algorithm DirApp shows

best performance in terms of cumulative execution time over U-DirApp, the proposed

algorithm mines the frequent sequential patterns based on their utilities. Utility based

sequential patterns gives us more information then sequential patterns in decision making.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1173

Fig 4(a) Cumulative time Vs Time Stamps

Fig 4(b) Execution time Vs No of Items

In this section we considered the different number of items as input parameters and examined

the effects on the proposed algorithms. The figure 4 (b) shows the total execution time of

both DirApp and U-DirApp. By the study conducted, we understood that the time taken

increases as the number of items increases because the number of candidate frequent

sequential patterns stored by proposed algorithms will be bigger as the number of items

increases.

Fig 4(c) Execution time Vs POI.

Here we have taken length of POI as input parameters and recorded the execution time for

the proposed algorithms. The figure 4(c) shows the total execution time of both DirApp and

U-DirApp with respect to length of POI . By the study conducted, we understood that the

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1174

time taken increases as the length of POI increases because the number of candidate frequent

sequential patterns stored by proposed algorithms will be bigger as length of POI increases.

7. REFERENCES

1. R. Agarwal and R. Srikanth, Mining sequential patterns, ICDE 1995, pp.3-14.

2. C.F.Ahmed, S.K. Tanbeer and B.Jeong, Mining High Utility Web Access Sequences in Dynamic Web Log

Data, SNPD 2010, pp.76-81.

3. C.F. Ahmed, S.K. Tanbeer, J. Byeong-Soo and L.Young-Koo, Efficient tree structures for high utility

pattern mining in incremental databases, TKDE 2009, vol.21, pp.1708-1721.

4. C.F. Ahmed, S.K. Tanbeer and B. Jeong, A Novel Approach for Mining High-Utility Sequential patterns in

Sequential Databases, ETRI Journal ,2010, vol.32,no.5, pp.676-686.

5. J.Ayres, J. Flannick, J. Gehrke and T. Yiu, Sequential PAttern mining using a bitmap representation , ICDM

2002, pp.429-435.

6. L.Cao, P.Yu, C.Zhang and Y.Zhao. Domain Driven Data Mining. Springer 2010.

7. Y. Li, J. Yeh and C. Chang, Isolated items discarding strategy for discovering high utility itemsets, Data and

knowledge Engineering, Vol.64, Issue 1, pp.198-217, Jan., 2008.

8. Y.Liu, W. Liao and A. choudhary, A two-phase algorithm for fast discovery of high utility itemsets,

PAKKD 2005, vol.3518, pp.689-695.

9. N.R Mabroukeh and C.I.Ezeife, A taxonomy of sequential pattern mining algorithms, ACM Comput. Surv.,

2010, vol. 43, pp.1-41.

10. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q.Chen, U.Dayal and M.C. Hsu., PrefixSpan: mining

sequential patterns efficiently by prefix-projected pattern growth, ICDE 2001, pp. 215-224.

11. B. Shie, H.Hsiao, V.S.Tseng and P.S.Yu, Mining high utility mobile sequential patterns in mobile

commerce environments, DASFAA 2011, pp.224-238.

12. V.S. Tseng, C.-W. Wu, B.-E. Shie and P.S. Yu, UP-Growth: an efficient algorithm for high utility itemset

mining, KDD 2010, pp.253-262.

13. H. Yao, H. J. Hamilton and C.J.Butz, A foundational approach to mining itemset utilities from databases,

ICDM 2004, pp.31-60.

14. M.J.Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences, Machine Learning, 2001,

vol.42, pp.31-60.

15. Jen-Wei Huang, Chi-Yao Tseng, Jian- Chih Ou, and Ming-Syan Chen, A General Model for Sequential

Pattern Mining with a Progressive Database, IEEE Transactions On Knowledge And Data Engineering ,

Vol. 20, No. 9, September 2008.pp. 1153-1167.

16. Junfu Yin, Zhigang Zheng and Longbing Cao, USpan: An Efficient Algorithm for Mining High Utility

Sequential Patterns.KDD 12,

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1175

