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 ABSTRACT: A trigonometric shear deformation theory for flexure of thick beams, taking into account 

transverse shear deformation effects, is developed. Governing differential equations and boundary conditions are 

obtained by using the principle of virtual work. The thick isotropic beams are considered for the numerical studies 

to demonstrate the efficiency of the theory. The simply supported isotropic beams subjected to cosine loads are 

examined using the present theory. Results obtained are discussed critically with those of other theories. This paper 

proposes a trigonometri shear deformation theory for thick isotropic simply supported beam. The displacement field 

of the present theory was based on a two variable, in which the transverse displacement is partitioned into the 

bending and shear parts. The proposed theories exactly satisfy the transverse stress boundary conditions on the 

bottom and top surfaces of the beam which were true in earlier shear deformation theories also. Beam governing 

equations and boundary conditions are derived by employing the principle of virtual work. The displacement and 

stresses of simply supported beam under cosine load are calculated to verify the accuracy and efficiency of the 

present theory. Numerical results indicate that the obtained predictions are comparable with other shear 

deformation theories. 

Keywords: Thick beam, trigonometric shear deformation, principle of virtual work, equilibrium equations, 

displacement, stress. 

 

1. INTRODUCTION  

It is well-known that elementary theory of bending of beam based on Euler-Bernoulli hypothesis disregards the 

effects of the shear deformation and stress concentration. The theory is suitable for slender beams and is not 

suitable for thick or deep beams since it is based on the assumption that the transverse normal to neutral axis 

remains so during bending and after bending, implying that the transverse shear strain is zero. Since theory neglects 

the transverse shear deformation, it underestimates deflections in case of thick beams where shear deformation 

effects are significant.  Bresse [1], Rayleigh [2] and Timoshenko [3] were the pioneer investigators to include 

refined effects such as rotatory inertia and shear deformation in the beam theory. Timoshenko showed that the 

effect of transverse vibration of prismatic bars. This theory is now widely referred to as Timoshenko beam theory 
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or first order shear deformation theory (FSDT) in the literature. In this theory transverse shear strain distribution is 

assumed to be constant through the beam thickness and thus requires shear correction factor to appropriately 

represent the strain energy of deformation. Cowper [4] has given refined expression for the shear correction factor 

for different cross-sections of beam. The accuracy of Timoshenko beam theory for transverse vibrations of simply 

supported beam in respect of the fundamental frequency is verified by Cowper [5] with a plane stress exact 

elasticity solution. To remove the discrepancies in classical and first order shear deformation theories, higher order 

or refined shear deformation theories were developed and are available in the open literature for static and vibration 

analysis of beam. Levinson [6], Bickford [7], Rehfield and Murty [8], Krishna Murty [9], Baluch, Azad and Khidir 

[10], Bhimaraddi and Chandrashekhara [11] presented parabolic shear deformation theories assuming a higher 

variation of axial displacement in terms of thickness coordinate. These theories satisfy shear stress free boundary 

conditions on top and bottom surfaces of beam and thus obviate the need of shear correction factor. Irretier [12] 

studied the refined dynamical effects in linear, homogenous beam according to theories, which exceed the limits of 

the Euler- Bernoulli beam theory. These effects are rotary inertia, shear deformation, rotary inertia and shear 

deformation, axial pre-stress, twist and coupling between bending and torsion. Kant and Gupta [13], Heyliger and 

Reddy [14] presented finite element models based on higher order shear deformation uniform rectangular beams. 

However, these displacement based finite element models are not free from phenomenon of shear locking (Averill 

and Reddy [15], Reddy [16]). There is another class of refined theories, which includes trigonometric functions to 

represent the shear deformation effects through the thickness. Vlasov and Leont’ev [17], Stein [18] developed 

refined shear deformation theories for thick beams including sinusoidal function in terms of thickness coordinate in 

displacement field. However, with these theories shear stress free boundary conditions are not satisfied at top and 

bottom surfaces of the beam. A study of literature by Ghugal and Shimpi [19] indicates that the research work 

dealing with flexural analysis of thick beams using refined trigonometric and hyperbolic shear deformation theories 

is very scarce and is still in infancy. In this paper development of theory and its application to thick simply 

supported beam is presented.  

2. DEVELOPMENT OF THEORY  

The beam under consideration as shown in Fig. 1 occupies in x-y-z Cartesian coordinate system the region: Where 

x, y, z are Cartesian coordinates, L and b are the length and width of beam in the x and y directions respectively, and 

h is the thickness of the beam in the z-direction. The beam is made up of homogeneous, linearly elastic isotropic 

material.  

 

Fig.1 Beam under bending in x-z plane 
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A. Assumptions made in the theoretical formulation: 

1. The axial displacement (u) consists of two parts: 

a) Displacement given by elementary theory of bending. 

b) Displacement due to shear deformation, which is assumed to be hyperbolic in nature with respect 

to thickness coordinate, such that maximum shear stress occurs at neutral axis as predicted by the 

elementary theory of bending of beam. 

2. The axial displacement (u) is such that the resultant of in-plane stress (σx) acting over the cross-section 

should result in only bending moment and should not in force in x direction. 

3. The transverse displacement (w) in z direction is assumed to be function of x coordinate. 

4. The displacements are small as compared to beam thickness. 

5. The body forces are ignored in the analysis. (The body forces can be effectively taken into account by 

adding them to the external forces.) 

6. One dimensional constitutive law are used. 

The beam is subjected to lateral load only. 

B. The Displacement Field: 

Based on the above mentioned assumptions, the displacement field of the present beam theory can be expressed as 

follows.  

   

   

, sin                                                                                                                               (01)

,                                          
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Where, 

u = Axial displacement in x direction which is function of x and z.

 w = Transverse displacement in z direction which is function of x. 

ϕ = Rotation of cross section of beam at neutral axis which is function of x 

 

Normal Strain: 
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Shear Strain: 
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Stress-strain relationships: 

One dimensional Hooke's law is applied for isotropic material, stress (σx) is related to strain (ϵx ) and shear stress is 

related to shear strain by the following constitutive relations: 
2
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where, E and G are the elastic constants of the beam material. 

B. Governing Equations and Boundary Conditions 

Governing differential equations and boundary conditions are obtained from Principle of virtual work. Using 

equations for stresses, strains and principle of virtual work, variationally consistent differential equations for beam 

under consideration are obtained. The principle of virtual work when applied to beam leads to: 

 
/ 2

0 /2 0
( ) 0                                                                                        (07)

x L z h X L

x x zx zxx z h X
b dxdz q x wdx    

  

  
      

Where, δ = variational operator, 

Employing Greens theorem in above equation successively, we obtained the coupled Euler-Langrange equations, 

which are the governing differential equations and associated boundary conditions of the beam. The governing 

differential equations obtained are as follows: 
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The associated variationally consistent boundary conditions obtained at the ends x = 0 and x = L is of following 

form: 
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Thus the boundary value problem of the beam bending is given by the above variationally consistent governing 

differential equations and boundary conditions.  

C. The General Solution of Governing Equilibrium Equations of the Beam 

The general solution for transverse displacement w(x) and warping function(x) is obtained using (8) and (9) using 

method of solution of linear differential equations with constant coefficients. Integrating and rearranging (8) we 

obtain the following expression.  

 23

3 3 2

24
                                                                                                                                        (13)

Q xdd w

EIdx dx




 

w

here Q(x) is the generalized shear force for beam and  it is given by   1

x

Q x qdx C 
 

Now (9) is rearranged in the following form:  
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A single equation in terms of   is now obtained using Eqns. (13) and (14) as: 

 2
2

2
                                                                                                                                                (15)

Q xd

EIdx


 


 

 

where the constants  ,   and  appeared in Eqns. (13) and (14) are as follows: 
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The general solution for transverse displacement w(x) can be obtained by substituting the value of  (x) in 

Eqn. (15) and then integrating it thrice with respect to x. The solution is: 

   
3 2

21
2 3 4 5 63
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6 4 2

C x EI x
EIw x qdxdxdxdx C x C x C C x C


   



 
        

 


 

where C1 , C2 , C3 , C4 , C5 and C6 are the arbitrary constants of integration and can be obtained by imposing 

natural (forced) and /or geometric or kinematical boundary / end conditions of beam. 

 

3. ILLUSTARTIVE EXAMPLE 

In order to prove the efficacy of the present theory, numerical example is considered. For the static flexural 

analysis, a uniform beam of rectangular cross section, having span length ‘L’, width ‘b’ and thickness ‘h’ of 

homogeneous, elastic and isotropic material is considered. The following material properties for beam are used. 

E = 210 GPa, μ = 0.3 and  = 7800 Kg/m
3

 

where E is the Young’s  modulus, is the density, and μ is the Poisson’s ratio of beam material. The kinematic 

and static (forced) boundary conditions associated with simply supported beam bending problems as follows: 

 

Simply Supported Beam with Cosine Load, 

The simply supported beam is having its origin at left support and is simply supported at x=0 and x=L. the beam is 

subjected to Cosine Load,                         on surface z = +h/2 in the   region   0  x  L / 2acting   in   the   

downward   z   direction   and   in   the   region  L / 2  x  L it acts in upward direction on surface z  h / 2 

wi t h  maximum intensity of load  q0. 

 Boundary conditions associated with this problem are as follows: 

0 0( ) cos
x

q x q
L
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Simple Supports:         

2

2
0

d w d
EI EI w

dxdx


  

                    at x=0 

 

Fig. 2: Simply supported beam with cosine load 

General expressions obtained for w(x) and ϕ(x) are as follows: 
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The axial displacement and stresses obtained based on above solutions are as follows: 
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4. PERFORMANCE ANALYSIS 

In this chapter, the results for inplane displacement, transverse displacement, inplane and transverse stresses are 

presented in the following non dimensional form for the purpose of presenting the results in this work. 

For beam subjected to load, q(x)      

0 0( ) cos
x

q x q
L




 

3

4
0 0 00

10
, w , ,                                                                         (26)x zx

x zx

b bEbu Ebh
u

q h q qq L

 
    

 

Table II: Non-Dimensional Axial Displacement u  at (x = 0.25L, z), Transverse Deflection  w  at (x = 0.25L, z) 

Axial Stress  x  at (x = 0.25L, z), Maximum Transverse Shear Stresses  CR
zx  and  EE

zx  (x = 0, z = 0.0) of 

the Simply Supported Beam Subjected to cosine load for aspect ratio 4.   
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Model u   w   x   CR
zx   EE

zx  

TSDT -0.1121 1.3067 -2.2033 1.1570 -5.3908 

FSDT -0.0624 1.3067 -2.0145 0.5111 1.2159 

ETB -0.0624 0.7676 -2.0145 --- 1.2159 

 

Table II: Non-Dimensional Axial Displacement u  at (x = 0.25L, z), Transverse Deflection  w  at (x = 0.25L, z) 

Axial Stress  x  at (x = 0.25L, z), Maximum Transverse Shear Stresses  CR
zx  and  EE

zx  (x = 0, z = 0.0) of 

the Simply Supported Beam Subjected to cosine load for aspect ratio 10.   

Model u   w   x   CR
zx   EE

zx  

TSDT -1.0991 1.3067 -12.7794 3.0415 -3.5670 

FSDT -0.9747 1.3067 -12.5906 3.1945 3.0396 

ETB -0.9747 0.7676 -12.5906 --- 3.0396 
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Fig. 3: Variation of maximum transverse displacement ( w  ) through the thickness of simply supported beam at (x 

= 0.25L, z) when subjected to cosine load for aspect ratio S. 
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Fig. 4: Variation of axial displacement  u   through the thickness of simply supported beam at   (x = 0.25L, z) when 

subjected to cosine load for aspect ratio 4. 
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Fig. 5: Variation of axial displacement  u   through the thickness of simply supported beam at   (x = 0.25L, z) when 

subjected to cosine load for aspect ratio 10 
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Fig. 6: Variation of axial stress  x  through the thickness of simply supported beam at (x = 0.25L, z) when 

subjected to cosine load for aspect ratio 4. 
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Fig. 7: Variation of axial stress  x  through the thickness of simply supported beam at (x = 0.25L, z) when 

subjected to cosine load for aspect ratio 10. 
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Fig. 8: Variation of transverse shear stress  CR
zx through the thickness of simply supported beam at (x = 0, z) 

when subjected to cosine load and obtain using constitutive relation for aspect ratio 4. 
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Fig. 9: Variation of transverse shear stress  CR
zx through the thickness of simply supported beam at (x = 0, z) 

when subjected to cosine load and obtain using constitutive relation for aspect ratio 10. 
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Fig. 10: Variation of transverse shear stress  EE
zx through the thickness of simply supported beam at (x = 0, z) 

when subjected to cosine load and obtain using constitutive relation for aspect ratio 4. 

-4 -2 0 2 4

zx

-0.50

-0.25

0.00

0.25

0.50

z/h

Present TSDT

FSDT

ETB

 

Fig. 11: Variation of transverse shear stress  EE
zx through the thickness of simply supported beam at (x = 0, z) 

when subjected to cosine load and obtain using constitutive relation for aspect ratio 10. 
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5. DISCUSSION OF RESULTS 

The comparison of results of maximum non-dimensional axial displacement ( )u  for the aspect ratios of 4 and 10 

is presented in Tables I and II for simply supported beams subjected to cosine load (see Figure 2). The values of 

axial displacement given by present theory are in close agreement with the values of other refined theories for 

aspect ratio 4 and 10. The through thickness distribution of this displacement obtained by present theory is in close 

agreement with other refined theories as shown in Figures 4 and 5 for aspect ratio 4 and 10. 

The comparison of result of maximum non-dimensional transverse displacement  w  is presented in Table I and 

II for simply supported beams subjected to cosine load. The value of present theory are in excellent agreement 

with the values of other refined theories except those of classical beam theory (ETB) and (FSDT) of Timoshenko. 

The variation of  w  with aspect ratio (S) is shown in Figure 3. The refined theories converge to the value of 

classical beam theory for higher aspect ratios. 

The results of axial stress  x  are shown in Tables I and II for aspect ratios 4 and 10. The axial stresses given 

by present theory are compared with other higher order shear deformation theories. It is observed that the results 

by present theory are in excellent agreement with other refined theories as well as ETB and FSDT. The through the 

thickness variation of this stress given by all the theories is linear at x = 0.25L. The variations of this stress are 

shown in Figures 6 and 7. The comparison of maximum non-dimensional transverse shear stress for simple beams 

with cosine load obtained by the present theory and other refined theories is presented in Tables I and II for aspect 

ratio of 4 and 10 respectively. The maximum transverse shear stress obtained by present theory using constitutive 

relation is in good agreement with that of higher order theories for aspect ratio 4 and for aspect ratio 10. The 

through thickness variation of this stress obtained via constitutive relation are presented graphically in Figures 8 

and 9 and those obtained via equilibrium equation are presented in Figures 10 and 11. The through thickness 

variation of this stress when obtained by various theories via equilibrium equation shows the excellent agreement 

with each other. The maximum value of this stress occurs at the neutral axis. 
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