Intuitionistic Fuzzy Relational Equations with Minimal Solution

P. Murugadas

Department of Mathematics, Govt. Arts College (Autonomous), Karur, India

Abstract:

In this paper, we study the sufficient condition for the existence of a minimal solution for the Intuitionistic Fuzzy relational equation $\mathbf{x}\mathbf{A} = \mathbf{b}$, and extend it to Intuitionistic Fuzzy Matrix equation $\mathbf{x}\mathbf{A} = \mathbf{Y}$.

Key words and phrases: Intuitionistic Fuzzy Matrix (IFM), Intuitionistic Fuzzy Set (IFS) and Intuitionistic Fuzzy relation.

AMS Mathematics Subject Classification (2010): 03E72,15B15.

1.Introduction

Atanassov [3] developed the concept of Intuitionistic Fuzzy Sets (IFSs) analogous to Fuzzy set. Im et., al [5] studied the determinant of square Intuitionistic Fuzzy Matrices (IFMs). Ketty Peeva and Yordan Kyosev [6] solved problems in Intuitionistic Fuzzy relational calculus by treating IFM as a Cartesian product of membership and non-membership functions. Meenakshi and Gandhimathi have studied the regularity, idempotency, invertibility and symmetry of IFMs in terms of those of its membership and non-membership matrices in [2] and discussed the consistency of Intuitionistic fuzzy relational equations in [1].

Sriram and Murugadas [7,8] studied Intuitionistic fuzzy vector space over Intuitionistic Fuzzy algebra and in [9] obtained maximal and minimal solution for Intuitionistic fuzzy relational equation. Guo et., al [4] studied the sufficient conditions for the existence of minimal solutions for the fuzzy relational equation xA = b. In this paper, we find the sufficient condition for the existence of a minimal solution of Intuitionistic Fuzzy relational equations. Intuitionistic Fuzzy relational equation xA = b means x is an unknown intuitionistic fuzzy vector with known IFM A and known Intuitionistic fuzzy vector b. Also, we extend this concept of a sufficient condition for the existence of a minimal solution to XA = Y where A and Y are known IFM with unknown X. Throughout this paper $I_n = \{1, 2, ..., n\}$, the index set.

2.Preliminaries

The set of all IFMs of order $m \times n$ is denoted by \mathcal{F}_{mn} .

Definition 2.1 1 [3]An Intuitionistic Fuzzy Set (IFS) *A* in *E* (universal set) is defined as an object of the following form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in E\}$, where the functions: $\mu_A(x): E \to [0,1]$ and $\nu_A(x): E \to [0,1]$ define the membership and non-membership functions of the element $x \in E$ respectively and for every $x \in E: 0 \le \mu_{A(x)} + \nu_A(x) \le 1$.

For simplicity, we consider the pair (x, x') as membership and non-member functions of an IFS with $x + x' \le 1$.

Definition 2.2 2 [3] For $\langle x, x' \rangle$, $\langle y, y' \rangle \in IFS$, define

$$\langle x, x' \rangle + \langle y, y' \rangle = \langle max\{x, y\}, min\{x', y'\} \rangle \langle x, x' \rangle \langle y, y' \rangle = \langle min\{x, y\}, max\{x', y'\} \rangle \langle x, x' \rangle^{c} = \langle x', x \rangle.$$

Definition 2.3 3[7] Let $X = \{x_1, x_2, \dots, x_m\}$ be the set of alternatives and $Y = \{y_1, y_2, \dots, y_n\}$ be the attribute set of each element of X. An Intuitionistic Fuzzy Matrix (IFM) is defined by $A = (\langle (x_i, y_j), \mu_A(x_i, y_j), \nu_A(x_i, y_j) \rangle)$ for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$, where $\mu_A: X \times Y \to [0,1]$ and $\nu_A: X \times Y \to [0,1]$ satisfy the condition $0 \le \mu_A(x_i, y_j) + \nu_A(x_i, y_j) \le 1$. For simplicity, we denote an intuitionistic fuzzy matrix (IFM) as a matrix of pairs $A = (\langle (a_{ij}, a_{ij}' \rangle))$ of a nonnegative real numbers satisfying $a_{ij} + a_{ij}' \le 1$ for all i, j. We denote the set of all IFM of order $m \times n$ by \mathcal{F}_{mn} .

For any two elements $A = (\langle a_{ij}, a_{ij}' \rangle), B = (\langle b_{ij}, b_{ij}' \rangle) \in \mathcal{F}_{mn}$, define

1.
$$A \lor B = ((max\{a_{ij}, b_{ij}\}, min\{a_{ij}', b_{ij}'\})) = A \oplus B_{i}(\text{component wise addition})$$

2. $A \wedge B = (\langle mn\{a_{ij}, b_{ij}\}, max\{a_{ij}', b_{ij}'\}\rangle) = AeB_{ij}(\text{component wise multiplication})$ for all

 $1 \leq i \leq m$ and $1 \leq j \leq n$.

3. J = ((1,0)) the Universal matrix(matrix in which all entries are (1,0))

4. $I = (\langle \delta_{ij}, \delta_{ij}' \rangle)$ (Identity Matrix) where $\langle \delta_{ij}, \delta_{ij}' \rangle = \begin{pmatrix} \langle 1, 0 \rangle & \text{if } i = j \\ \langle 0, 1 \rangle & \text{if } i \neq j \end{pmatrix}$

5. $A \ge B$ if $a_{ij} \ge b_{ij}$ and $a_{ij}' \le b_{ij}'$ for all i,j,A > B if $A \ge B, A \ne B$. (In this case A and B are comparable.)

6. $\overline{A} = (\langle a_{ij}', a_{ij} \rangle)$ (complement of A).

Definition 2.44 [7] If $A = (\langle a_{ij}, a_{ij}' \rangle) \in \mathcal{F}_{mn}$ and $B = (\langle b_{ij}, b_{ij}' \rangle) \in \mathcal{F}_{np}$ then the product of A and B denoted as AB (max-min) is an IFM defined by

 $AB = \left(\left(\max_{k=1}^{n} \{ \min\{a_{ik}, b_{kj} \} \}, \min_{k=1}^{n} \{ \max\{a_{ik}', b_{kj}' \} \} \right) \right), \text{ where } 1 \le k \le n, 1 \le i \le m$ and $1 \le j \le p$.

Definition 2.55 [7] Let $A = (\langle a_{ij}, a_{ij}' \rangle) \in \mathcal{F}_{mn}$ and $c \in F = [1,0]$, then the intuitionistic fuzzy scalar multiplication is defined as $cA = (\langle min\{c, a_{ij}\}, max\{1 - c, a_{ij}'\}\rangle) \in \mathcal{F}_{mn}$.

Definition 2.66 [8] Let V_n denote the set of all n-tuples.

 $\begin{array}{l} (\langle v_1, v_{1\prime} \rangle, \ldots \langle v_n, v_{n\prime} \rangle). \text{ The following operations are defined for} \\ v = (\langle v_1, v_{1\prime} \rangle, \ldots \langle v_n, v_{n\prime} \rangle), s = (\langle s_1, s_{1\prime} \rangle, \ldots \langle s_n, s_{n\prime} \rangle) \text{ in } V_n \text{ and } r \in F = [0,1] \\ (\langle v_1, v_{1\prime} \rangle, \ldots \langle v_n, v_{n\prime} \rangle) + (\langle s_1, s_{1\prime} \rangle, \ldots \langle s_n, s_{n\prime} \rangle) = \\ (\langle v_1, v_{1\prime} \rangle + \langle s_1, s_{1\prime} \rangle, \ldots \langle v_n, v_{n\prime} \rangle + \langle s_n, s_{n\prime} \rangle) \text{ and} \\ r(\langle v_1, v_{1\prime} \rangle, \ldots \langle v_n, v_{n\prime} \rangle) = (r\langle v_1, v_{1\prime} \rangle, \ldots r\langle v_n, v_{n\prime} \rangle). \end{array}$

The members of V_n have the properties

1. v + w = w + v 2. v + (w + u) = (v + w) + u 3. (ab)v = a(bv)4. (a + b)v = av + bv 5. a(v+w) = av + aw

6.
$$1v = v$$

7.v + 0 = 0 + v = v

 $8. \mathbf{0}\mathbf{v} = \mathbf{v}\mathbf{0} = \mathbf{0},$

where $u, v, w \in V_n$ and $a, b \in F, O = ((0,1), ..., (0,1)), 1 = (1.0).$

If we write a member of V_n as $1 \times n$ matrix, it is called a row vector. The isometric set of $n \times 1$ matrices is called column vectors, and denoted by V^n . For any result about V_n there exists a corresponding result about V^n . The system V_n together with these operations is called intuitionistic fuzzy vector space over F.

 $D(V_n)$ denotes the set of all finite subsets of V_n and |A| the cardinality of an element $A \in D(V_n)$.

Definition 2.77 [8] A subspace W of V_n is a subset such that $O \in W$ and $a + b \in W$ for any $a, b \in W$. A linear combination of elements of a set $S = \{\langle s_1, s_{1'} \rangle \dots \langle s_k, s_{k'} \rangle\} \in D(V_n)$ is a finite sum $\sum_{i=1}^k \alpha_i \langle s_i, s_{i'} \rangle$ where $\alpha_i, \in [0,1]$. The set of all the linear combinations of elements of S is called the span of S, denoted by $\langle S \rangle$.

It follows immediately that (S) is contained in every subspace W such that $S \subseteq W$.

If we denote by $(e_i, e_{i'}), i \in I_n$, the element of V_n having $\langle 1, 0 \rangle - i^{th}$ coordinates and $\langle 0, 1 \rangle$ otherwise, it is evident that $V_n = \langle E \rangle$, where $E = \{\langle e_1, e_{1'} \rangle, \dots, \langle e_n, e_{n'} \rangle\} \in D(V_n)$.

Let $x = (\langle x_{11}, x_{11}' \rangle, \dots, \langle x_{1m}, x_{1m}' \rangle), b = (\langle b_{11}, b_{11}' \rangle, \dots, \langle b_{1n}, b_{1n}' \rangle).$ For $A \in \mathcal{F}_{mn}$,

xA = b we mean $\max_{j} (x_{1j}, x_{1j}') \langle a_{jk}, a_{jk}' \rangle = \langle b_{1k}, b_{1k}' \rangle$ for $j \in I_m$ and $k \in I_n$. Denote $\Omega(A, b) = \{x | xA = b\}$ (The solution set of xA = b)

Theorem 2.88 [1] Let xA = b. If $\langle \max_{j} a_{jk}, \min_{j} a_{jk}' \rangle < \langle b_{1k}, b_{1k}' \rangle$ for some $k \in I_n$, then $\Omega(A, b) = \emptyset$.

Definition 2.99 [1] For the intuitionistic fuzzy relational equation xA = b, the solution set $\Omega(A, b) = \{x/xA = b\} \neq \emptyset$ if and only if

 $\hat{x} = [\langle \hat{x}_{1j}, \hat{x}_{1j}' \rangle | j \in I_m]$ defined as

 $\begin{aligned} &\langle \hat{x}_{1j}, \hat{x}_{1j}' \rangle = \langle \min\sigma(a_{jk}, b_{ik}), \max\sigma'(a_{jk}', b_{1k}') \rangle, \text{where} \\ &\sigma(a_{jk}, b_{1k}) = \begin{pmatrix} b_{1k} & \text{if} a_{jk} > b_{1k} \\ 1 & \text{otherwise} \end{pmatrix} \\ &\sigma'(a_{jk}', b_{1k}') = \begin{pmatrix} b_{1k}' & \text{if} a_{jk}' < b_{1k}' \\ 0 & \text{otherwise} \end{pmatrix}$ is the maximum solution of xA = b.

We can write the above definition equivalently as

$$\langle \hat{x}_{1j}, \hat{x}_{1j}' \rangle = \langle a_{jk}, a_{jk}' \rangle \rightarrow \langle b_{1k}, b_{1k}' \rangle = \begin{pmatrix} \langle b_{1k}, b_{1k}' \rangle & \text{if} \langle a_{jk}, a_{jk}' \rangle > \langle b_{1k}, b_{1k}' \rangle \\ \langle 1, 0 \rangle & otherwise \end{pmatrix}$$

which is the implication operator defined for IFS and IFM by Sriram and Murugadas [10] and in [9] Sriram and Murugadas have proved that the maximum solution $\langle \hat{x}, \tilde{x^{i}} \rangle$ for the intuitionistic fuzzy relation equation is unique and the minimal solution $\langle \tilde{x}, \tilde{x^{i}} \rangle$ is not unique. The maximum and minimum solutions are related by $\langle \hat{x}, \tilde{x^{i}} \rangle \ge \langle \tilde{x}, \tilde{x^{i}} \rangle$.

3. Some Results

Definition 3.110 Let $A, B \in D(V_n)$. *B* is called the spanning set of *A* if $A \subseteq \langle B \rangle$. Let $A \in D(V_n)$ and $\mathfrak{U} = \mathfrak{U}(A)$ the family of all the spanning sets of *A*. Note that $A \in \mathfrak{U}$ since $A \subseteq \langle A \rangle$. Hence $\mathfrak{U} \neq \emptyset$.

Definition 3.211 We say that an element $B \in \mathfrak{U}$ is a basis of A if $|B| = \omega(A)$, where $\omega(A) = \min\{|C|: C \in \mathfrak{U}\}.$

Since $A \in \mathfrak{U}$ and clearly $E \in \mathfrak{U}$. Because $A \subseteq V_n = \langle E \rangle$, we have that $\omega(A) \leq \min\{|A|, n\}$. Henceforth, we consider only subsets A of $D(V_n)$ such that $|A| \leq n$.

Now let $\langle y, y' \rangle \in V_n$ and $A \in D(V_n)$ be such that $\langle y, y' \rangle \in \langle A \rangle$. Let us consider the family $\mathfrak{B} = \mathfrak{B}(\langle y, y' \rangle, A)$ of all subsets $B \in D(V_n)$ contained in A and such that $\langle y, y' \rangle \in \langle B \rangle$. Note that $\mathfrak{B} \neq \emptyset$ since $A \in \mathfrak{B}$.

Definition 3.312 An element $B \in \mathfrak{B}$ is said to be a basis of $\langle y, y' \rangle$ in A if $|B| = \omega(\langle y, y' \rangle, A)$, where $\omega(\langle y, y' \rangle, A) = \min\{|C|: C \in \mathfrak{B}\}$.

The basis B of $\langle y, y' \rangle$ in A is not unique, it is proved in the following example.

Example 3.4 Let
$$A = \{\langle a_1, a_{1'} \rangle, \langle a_2, a_{2'} \rangle, \langle a_3, a_{3'} \rangle, \langle a_4, a_{4'} \rangle\}$$
 where
 $\langle a_1, a_{1'} \rangle = (\langle 0.1, 0.9 \rangle, \langle 0.4, 0.6 \rangle, \langle 0.5, 0.5 \rangle, \langle 0.1, 0.9 \rangle)$
 $\langle a_2, a_{2'} \rangle = (\langle 0.9, 0.1 \rangle), (\langle 0.7, 0.3 \rangle, \langle 0.2, 0.8 \rangle, \langle 0,1 \rangle)$
 $\langle a_3, a_{3'} \rangle = (\langle 0.8, 0.2 \rangle), (\langle 1, 0 \rangle, \langle 0.5, 0.5 \rangle, \langle 0,1 \rangle)$
 $\langle a_4, a_{4'} \rangle = (\langle 0.1, 0.9 \rangle), (\langle 0.3, 0.7 \rangle, \langle 0.6, 0.4 \rangle, \langle 0,1 \rangle)$ and
 $\langle y, y' \rangle = (\langle 0.8, 0.2 \rangle), (\langle 0.7, 0.3 \rangle, \langle 0.5, 0.5 \rangle, \langle 0,1 \rangle)$

It is easily seen that $(y, y') \in \langle A \rangle$ since

$$\begin{array}{l} \langle y, y' \rangle = 0 \langle a_1, a_{1\prime} \rangle + 0.8 \langle a_2, a_{2\prime} \rangle + 0.7 \langle a_3, a_{3\prime} \rangle + 0.5 \langle a_4, a_{4\prime} \rangle \text{ and} \\ B_1 = \{ \langle a_2, a_{2\prime} \rangle, \langle a_3, a_{3\prime} \rangle \}, B_2 = \{ \langle a_2, a_{2\prime} \rangle, \langle a_4, a_{4\prime} \rangle \} \text{ are such that} \\ \langle y, y' \rangle \in \langle B_i \rangle, i = 1, 2. \end{array}$$

Since $\langle y, y' \rangle = 0.8 \langle a_2, a_{2'} \rangle + 0.5 \langle a_3, a_{3'} \rangle$ and $\langle y, y' \rangle = 0.8 \langle a_2, a_{2'} \rangle + 0.5 \langle a_4, a_{4'} \rangle$. Also for any $\alpha \in [0,1], \langle y, y' \rangle \neq \alpha a_i$ for i = 1,2,3,4.

Hence $\omega(\langle y, y' \rangle, A) = 2$ and B_1, B_2 are distinct basis of $\langle y, y' \rangle$ in A.

Remark 3.5 If $\langle y, y' \rangle$ is not dependent on A, that is $\langle y, y' \rangle \notin \langle A \rangle$ we write $\omega(\langle y, y' \rangle, A) = 0$ and clearly $\omega(\langle y, y' \rangle, A) = 1$ if $\langle y, y' \rangle \in A$.

Theorem 3.613 If $B \in D(V_n)$ is a basis of $A \in D(V_n)$, then B is an independent set.

Proof: We have $|B| = \omega(A)$ and $A \subseteq \langle B \rangle$.

If *B* were dependent, then there would exist at least an intuitionistic fuzzy vector $\langle b, b' \rangle \in B$ such that $\langle b, b' \rangle \in \langle B \rangle$ where $B' = B - \{\langle b, b' \rangle\}$. Then $B \subseteq \langle B \rangle$ and this would imply $A \subseteq \langle B \rangle \subseteq \langle B' \rangle$, that is $B' \in A$. Thus $\omega(A) \leq |B'| = |B| - 1 = \omega(A) - 1$, a contradiction. Hence *B* is an independent set.

Similarly, we can prove that a basis B of $y \in A$ is an independent set.

Theorem 3.714 Let V_n be the vector space on the intuitionistic fuzzy algebra $[0,1], \langle y, y' \rangle \in V_n$ and $A = \{\langle a_1, a_{1'} \rangle, \dots, \langle a_q, a_{q'} \rangle\} \in D(V_n)$ such that $\langle y, y' \rangle \in \langle A \rangle$. If $\omega(A) < q \le n$, then $\omega(\langle y, y' \rangle, A) < q \le n$. **Proof:** By putting $\omega(A) = k < q \le n$, Let $B = \{\langle b_1, b_{1'} \rangle, \dots, \langle b_k, b_{k'} \rangle\}$ be a basis of A. Then there exist $\lambda_{ij} \in [0,1], i \in I_n, j \in I_k$, such that $\langle a_i, a_{i'} \rangle = \lambda_{i1} \langle b_1, b_{1'} \rangle + \lambda_{i2} \langle b_2, b_{2'} \rangle + \dots + \lambda_{ik} \langle b_k, b_{k'} \rangle$ $\sum_{j=1}^k \lambda_{ij} \langle b_j, b_{j'} \rangle$ (3.1) for any $i \in I_n$. Since $\langle y, y' \rangle \in \langle A \rangle$, then there exist $\alpha_i \in [0,1], i \in I_q$, such that $\langle y, y' \rangle = \alpha_1 \langle a_1, a_{1'} \rangle + \alpha_2 \langle a_2, a_{2'} \rangle + \dots + \alpha_q \langle a_q, a_{q'} \rangle$ $= \alpha_1 (\sum_{i=1}^k \lambda_{1i} \langle b_i, b_{i'} \rangle) + \dots + \alpha_q (\sum_{i=1}^k \lambda_{ij} \langle b_i, b_{i'} \rangle)$

$$= (\sum_{i=1}^{q} \alpha_i \lambda_{i1}) \langle b_1, b_{1'} \rangle + \dots + (\sum_{i=1}^{q} \alpha_i \lambda_{ik}) \langle b_k, b_{k'} \rangle$$

Since the sum of intuitionistic fuzzy algebra is the maximum, let i(j) be an index such that $\sum_{i=1}^{q} \alpha_i \lambda_{ij} = \max_{1 \le i \le q} \{\alpha_i \lambda_{ij}\} = \alpha_{i(j)} \lambda_{i(j)}, (3.2).$

for any
$$j \in I_k$$
. Thus

$$\langle y, y' \rangle = (\alpha_{i(1)} \cdot \lambda_{i(1)1}) \langle b_1, b_{1'} \rangle + \dots + (\alpha_{i(k)} \cdot \lambda_{i(k)k}) \langle b_k, b_{k'} \rangle$$
(3.3)
We now prove the existence of a subset $B' \subseteq A$ such that $|B'| = k$ and $\langle y, y' \rangle \in \langle B' \rangle$

We now prove the existence of a subset $B' \subseteq A$ such that |B'| = k and $(y, y') \in \langle B' \rangle$.

Let
$$B' = \{ \langle a_{i(1)}, a_{i(1)}' \rangle, \dots \langle a_{i(k)}, a_{i(k)}' \rangle \} \subseteq A.$$

From (3.2) and (3.3)

$$\begin{aligned} &\alpha_{i(1)} \langle a_{i(1)}, a_{i(1)}' \rangle + \dots + \alpha_{i(k)} \langle a_{i(k)}, a_{i(k)}' \rangle \\ &= \alpha_{i(1)} (\sum_{j=1}^{k} \lambda_{i(1)j}, \langle b_{j}, b_{j}' \rangle) + \dots + \alpha_{i(k)} (\sum_{j=1}^{k} \lambda_{i(k)j}, \langle b_{j}, b_{j}' \rangle) \\ &= (\sum_{t=1}^{k} \alpha_{i(t)} \lambda_{i(t)1}) \langle b_{1}, b_{1}' \rangle + \dots + (\sum_{t=1}^{k} \alpha_{i(t)} \lambda_{i(t)k}) \langle b_{k}, b_{k}' \rangle) \\ &= \alpha_{i(1)} \lambda_{i(1)1} \langle b_{1}, b_{1}' \rangle + \dots + \alpha_{i(k)} \lambda_{i(k)k} \langle b_{k}, b_{k}' \rangle \\ &= \langle y, y' \rangle \end{aligned}$$

Then $\langle y, y' \rangle \in \langle B' \rangle$ and hence $B' \in \mathfrak{B}$. This implies $\omega(\langle y, y' \rangle, A) \leq k < q \leq n$ and hence the proof.

Let A be an *IFM*, $\langle a_i, a_{i'} \rangle = (\langle a_{i1}, a_{i1'} \rangle, \dots \langle a_{in}, a_{in'} \rangle)$ and $\langle a^j, a^{j'} \rangle = (\langle a_{1j'}, a_{1j'} \rangle, \dots \langle a_{nj'}, a_{nj'} \rangle)$ be the i^{th} - row and the j^{th} -column, respectively of A.

Let
$$A_r = \{ \langle a_1, a_{1'} \rangle, \dots \langle a_n, a_{n'} \rangle \}$$

and $A^c = \{ \langle a^1, a^{1'} \rangle, \dots, \langle a^n, a^{n'} \rangle \}$ be the sets of the row vectors and column vectors of A, respectively. Then $A_r, A^c \in D(V_n)$ and the following result holds.

Theorem 3.815 $\omega(A_r) = \omega(A^c)$.

Proof: Let $\omega(A_n) = k \leq n$ and $B = \{\langle b_1, b_1, \rangle, \dots, \langle b_k, b_k, \rangle\}$ be a basis of A_n .

where $\langle b_s, b_{s'} \rangle = (\langle b_{s1}, b_{s1}' \rangle, \dots, \langle b_{sn}, b_{sn}' \rangle) \in V_n$ for any $s \in I_k$. Then there exist $\lambda_{ij} \in [0,1], i \in I_n, j \in I_k$ such that (3.1) holds for any $i \in I_n$. Thus each element $\langle a_{ij}, a_{ij} \rangle$ in (a_i, a_i') can be written as

$$\langle a_{ij}, a_{ij}' \rangle = \sum_{s=1}^{k} \lambda_{is} \langle b_{sj}, b_{sj}' \rangle$$
 for any $i, j \in I_n$ (3.4)

If we put $\Lambda = \{\lambda_1, \dots, \lambda_k\}$ where $\lambda_s = \{\lambda_{1s}, \dots, \lambda_{ns}\}$ for any $s \in I_k$ we deduce from (3.4) that

 $\langle a^j, a^{j'} \rangle = \sum_{s=1}^k \langle b_{sj}, b_{sj'} \rangle \lambda_s$ for any $j \in I_n$. This means that $A^c \subseteq \langle \Lambda \rangle$ and hence $\Lambda \in \mathfrak{U}(A^{c}).$

Thus $\omega(A^c) \leq |\Lambda| = k$ and assume that $\omega(A^c) = p < k$. Thus there exist p vectors of V_n whose span contain A^c . Similarly we can prove any vector of A_r is a linear combination of p vectors of V_n , a contradiction to the assumption that $\omega(A_r) = k > p$.

4.Application of intuitionistic fuzzy relation equations:

Let $\Omega = \Omega(A, y) = \{$ the set of all solutions of $/xA = y \}$ where $x = \langle x, x' \rangle = (\langle x_1, x_{1'} \rangle, \dots, \langle x_n, x_{n'} \rangle) \in V_n, y = \langle y, y' \rangle = (\langle y_1, y_{1'} \rangle, \dots, \langle y_n, y_{n'} \rangle) \in V_n.$ Clearly $\Omega = \emptyset$ if and only if $\omega(y, A) = 0$ and $A \cup \{y\}$ is a dependent set of V_n if $\Omega \neq \emptyset$.

Theorem 4.116 Let $\Omega \neq \emptyset$. if $\omega(\langle y, y' \rangle, A) = n$, then for any $\langle x, x' \rangle \in \Omega$ we have $\langle x_i, x_{ii} \rangle > \langle 0, 1 \rangle$ for any $i \in I_n$.

Proof: Let $\langle x, x' \rangle \in \Omega$ be such that $\langle x_h, x_{h'} \rangle = \langle 0, 1 \rangle$ for some $h \in I_n$. Then $\langle y_{i}, y_{i} \rangle =$ $\langle x_{1}, x_{1} \rangle \langle a_{1i}, a_{1i} \rangle + \dots + \langle x_{h-1}, x_{h-1} \rangle \langle a_{(h-1)i}, a_{(h-1)i} \rangle +$

 $\langle a_{h+1}, a_{h+1}' \rangle \langle a_{(h+1)j}, a_{(h+1)j}' \rangle +, \dots, + \langle x_n, x_n' \rangle \langle a_{nj}, a_{nj}' \rangle$

(4.1)

for any $j \in I_n$ and this means that $\langle y, y' \rangle$ is a linear combination of at most n-1 row vectors of A, that is $n = \omega(\langle y, y' \rangle, A) \le n - 1$, a contradiction.

Remark 4.217 Let $f = (f(1), f(2), \dots, f(n))$ be a permutation of I_n . Let us consider the fuzzy vector $\langle y, y' \rangle = (\langle y_1, y_{1'} \rangle, \dots, \langle y_n, y_{n'} \rangle)$ intuitionistic such that $\langle y, y' \rangle = \langle y_{f(i)}, y_{f(i)}' \rangle$ for any $i \in I_n$ and the IFM $A' = \langle a_{ij}, a_{ij}' \rangle, i, j \in I_n$ such that $\langle a_{ij}, a_{ij}' \rangle = \langle a_{if(i)}, a_{if(i)}' \rangle$ for any $j \in I_n$. Now if $\langle x, x' \rangle$ is a solution of $\langle x, x' \rangle A = \langle y, y' \rangle$, (4.2)

we have $\langle y_j, y_{j'} \rangle' = \langle y_{f(i)}, y_{f(i)}' \rangle = \sum_{i=1}^n \langle x_i, x_{i'} \rangle \langle a_{if(i)}, a_{if(i)} \rangle$ that is $\langle x, x' \rangle$ is also a solution of the IF equation $\langle x, x' \rangle A' = \langle y, y' \rangle$(4.3).

Similarly, let $\langle x, x' \rangle$ be a solution of (4.2), we have for any $j \in I_{n'}$

$$\begin{split} \langle y_j, y_{j'} \rangle &= \langle y_{f^{-1}(i)}, y_{f^{-1}(j)} \rangle \\ &= \sum_{i=1}^n \langle x_i, x_{i'} \rangle \langle a_{if^{-1}(j)}, a_{if^{-1}(j)'} \rangle' \\ &= \sum_{i=1}^n \langle x_i, x_{i'} \rangle \langle a_{ij}, a_{ij'} \rangle, \end{split}$$

which implies that $\langle x, x' \rangle$ is also solution of the IF equation $\langle x, x' \rangle A = \langle y, y' \rangle$. Then the equations (4.2) and (4.3) have the same solution and clearly every Theorem or Property concerning (4.2), concerns similarly (4.3) and vice versa.

Clearly, we have $\omega(\langle y, y' \rangle, A) = \omega(\langle y, y' \rangle, A')$.

Remark 4.318 It is evident that for $\langle x, x' \rangle \in \Omega$, there exist at least an index $i \in I_n$ such that $\langle x_i, x_{i'} \rangle \langle a_{ij}, a_{ij'} \rangle = \langle y_j, y_{j'} \rangle$ for any $j \in I_n$.

Definition 4.4 19 For each $\langle x, x' \rangle \in \Omega$, Let

$$I_j(\langle x, x' \rangle) = \{i \in I_n : \langle x_i, x_{i'} \rangle \langle a_{ij}, a_{ij'} \rangle = \langle y_j, y_{j'} \rangle \} \text{ for any } j \in I_n.$$

Theorem 4.520 Let $\Omega \neq \emptyset$. Then $\omega(\langle y, y' \rangle, A) = n$ if and only if for any $\langle x, x' \rangle \in \Omega$ we have $I_j(\langle x, x' \rangle) \cap I_{j'}(\langle x, x' \rangle) = \emptyset$ for any $j, j' \in I_n$.

Proof: Let $\omega(\langle y, y' \rangle, A) = n$ and without loss of generality let

$$I_1(\langle x, x' \rangle) \cap I_2(\langle x, x' \rangle) = \{h\} \text{ for some } \langle x, x' \rangle \in \Omega$$

Then we have

$$\begin{split} \langle y_1, y_{1'} \rangle &= \langle x_h, x_{h'} \rangle \langle a_{h1}, a_{h1}' \rangle, \\ \langle y_2, y_{2'} \rangle &= \langle x_h, x_{h'} \rangle \langle a_{h2}, a_{h2}' \rangle, \\ \langle y_j, y_{j'} \rangle &= \langle x_t, x_{t'} \rangle \langle a_{t1}, a_{t1}' \rangle, \end{split}$$

for any $j \in I_n - \{1, 2\}$, where $t \in I_j(\langle x, x' \rangle)$.

It is easily seen that these inequalities imply that $\langle y, y' \rangle$ is a linear combination of at most n - 1 row vectors of A, that is $n = \omega(\langle y, y' \rangle, A) \le n - 1$, a contradiction.

Assume $I_j(\langle x, x' \rangle \cap I_{j'}\langle x, x' \rangle) = \emptyset$ for any $j, j' \in I_n$ and $\langle x, x' \rangle \in \Omega$ implies

 $|I_i(\langle x, x' \rangle)| = 1$ for any $j \in I_n$ and $\langle x, x' \rangle \in \Omega$.

Suppose $\Omega(\langle y, y' \rangle, A) = k < n$ and let

 $B = \{ \langle a_{i(1)}, a_{i(1)}' \rangle, \dots, \langle a_{i(k)}, a_{i(k)}' \rangle \} \text{ be a basis of } \langle y, y' \rangle \text{ in } A. \text{ Since } \langle y, y' \rangle \text{ is dependent on } B, \text{ there exist } k \text{ elements } \lambda_{i(t)} \in [0,1], t \in I_k, \text{ such that } \}$

$$\langle \mathbf{y}, \mathbf{y}' \rangle = \langle \lambda_{i(1)}, \lambda_{i(1)}' \rangle \langle a_{i(1)}, a_{i(1)}' \rangle + \dots + \langle \lambda_{i(k)}, \lambda_{i(k)}' \rangle \langle a_{i(k)}, a_{i(k)}' \rangle, \text{ that is}$$

$$\langle \mathbf{y}_j, \mathbf{y}_{j'} \rangle = \langle \lambda_{i(1)}, \lambda_{i(1)}' \rangle \langle a_{i(1)j}, a_{i(1)j}' \rangle + \dots + \langle \lambda_{i(k)}, \lambda_{i(k)}' \rangle \langle a_{i(k)j}, a_{i(k)j}' \rangle$$

$$(4.4)$$

for any $j \in I_n$.

Defining the fuzzy vector $\langle x, x' \rangle$ having the $i(t)^{th}$ co-ordinate, $t \in I_k$, equal to $\langle \lambda_{i(t)}, \lambda_{i(t)}' \rangle$ and $\langle 0, 1 \rangle$ otherwise it follows from (4.4) that $\langle x, x' \rangle \in \Omega$.

Since $|I_j(\langle x, x' \rangle)| = 1$ for any $j \in I_n$, equation (4.4) implies that for any $j \in J = \{i(t): t \in I_k\}$, there exist a unique index $t \in I_k$ such that $\langle y_j, y_{j'} \rangle = \langle x_{i(t)}, x_{i(t)}' \rangle' \langle a_{i(t)j'}, a_{i(t)j'} \rangle$

Let $j' \in I_n - J$. We have that the singleton set $I_{j'}(\langle x, x' \rangle)$ must necessarily be an index $i(t) \in J, t \in I_k$; otherwise if $I_{j'}(\langle x, x' \rangle) = \{h\}$ with $h \in I_n - J$,

we would obtain

$$\langle 0,1 \rangle < \langle y_{ji}, y'_{ji} \rangle = \langle x_h, x_{hi} \rangle \langle a_{hj}, x_{hj}' \rangle = \langle 0,1 \rangle$$
 a contradiction.

On the other hand $\{i(t)\} = I_j(\langle x, x' \rangle)$ for some $j \in J$ and hence

 $I_j(\langle x, x' \rangle) \cap I_{j'}(\langle x, x' \rangle) = \{i(t)\}, a \text{ contradiction to the hypothesis.}$

By Theorem 4.5, $I_j(\langle x, x' \rangle)$ is a singleton set for any $j \in I_n$ and for any $\langle x, x' \rangle \in \Omega$ if $\omega(\langle y, y' \rangle, A) = n$. However, we explicitly point out that for any $h \in I_n$, there exists a unique index $j \in I_n$ such that $I_j(\langle x, x' \rangle) = \{h\}$ for any $\langle x, x' \rangle \in \Omega$.

Theorem 4.621 Let $\Omega \neq \emptyset$. If $\omega(\langle y, y' \rangle, A) = n$ then for any $j \in I_n$ we have $I_j(\langle x, x' \rangle) = I_j(\langle x, x' \rangle)$ for any $\langle x, x' \rangle, \langle x, x' \rangle \in \Omega$.

Proof: Let $\langle x, x' \rangle \in \Omega$ and for any $j \in I_n$ denote by i(j) the unique element of I_n

such that
$$\langle y, y_{j'} \rangle = \langle x_{i(j)}, x_{i(j)'} \rangle \langle a_{i(j)j'}, a_{i(j)j'} \rangle.$$
 (4.5)

Thus $I_j(\langle x, x' \rangle) = \{i(j)\}$ and $\langle x, x' \rangle$ is another element of Ω , we must prove that $I_i(\langle x, x' \rangle) = \{i(j)\}$ for any $j \in I_n$.

Assume that
$$\langle y_j, y_{j'} \rangle > \langle x_{i(j)}, x_{i(j)'} \rangle \langle a_{i(j)j}, a_{i(j)j'} \rangle$$
 (4.6)

and let $k \in I_n$ such that

$$\langle y_k, y_{k'} \rangle = \langle x_{i(j)}, x_{i(j)}' \rangle' \langle a_{i(j)k}, a_{i(j)k}' \rangle$$

$$(4.7)$$

clearly $j \neq k$ and $i(j) \neq i(k)$ by theorem (4.2)

Then we have
$$\langle y_k, y_{k'} \rangle > \langle x_{i(j)}, x_{i(j)}' \rangle \langle a_{i(j)k}, a_{i(j)k}' \rangle$$
 (4.8)

From (4.5)
$$\langle a_{i(j)j}, a_{i(j)j}' \rangle \ge \langle y_j, y_{j'} \rangle$$
 (4.9)

We claim
$$\langle y_j, y_j' \rangle > \langle x_{i(j)}, x_{i(j)}' \rangle'$$
. (4.10)

Suppose if, $\langle y_i, y_{i'} \rangle \leq \langle x_{i(j)}, x_{i(j)}' \rangle'$ and (4.9) if follows that

$$\langle y_j, y_{j\prime} \rangle \leq \langle x_{i(j)}, x_{i(j)} \rangle \langle \langle a_{i(j)j}, a_{i(j)j} \rangle$$
 a contradiction to (4.6).
By (4.7), $\langle x_{i(j)}, x_{i(j)} \rangle \geq \langle y_k, y_{k\prime} \rangle$

Thus from (4.10) $\langle y_j, y_{j'} \rangle \ge \langle y_k, y_{k'} \rangle$

On the other hand , from (4.5) $\langle x_{i(j)}, x_{i(j)} \rangle \ge \langle y_j, y_{j'} \rangle$ and by (4.7)

$$\langle a_{i(j)k}, a_{i(j)k}' \rangle \geq \langle y_k, y_{k'} \rangle$$

Thus we obtain from (4.8) and (4.11)

$$\langle y_k, y_{k'} \rangle > \langle x_{i(j)}, x_{i(j)'} \rangle \langle a_{i(j)k}, a_{i(j)k'} \rangle \ge \langle y_j, y_j' \rangle \langle y_k, y_k' \rangle = \langle y_k, y_k' \rangle$$

a contradiction, this means $j = k$. Hence the Theorem.

Remark 4.7 22 Theorem (4.6) guarantees that $\langle x_i, x_i' \rangle' \langle a_{ij}, a_{ij'} \rangle = \langle y_j, y_j' \rangle$ (4.12) holds for any $\langle x, x' \rangle' \in \Omega - \{\langle x, x' \rangle\}$. In account of this, it is evident that if $\langle a_{ij}, a_{ij'} \rangle = \langle y_j, y_i' \rangle$ the greatest value $\langle \hat{x}_i, \hat{x}_i' \rangle$ to put in $\langle x_i, x_i' \rangle$ in order to satisfy (4.12) is

(4.11)

(1,0), while the smallest value $\langle \tilde{x}_i, \tilde{x}_i' \rangle$ is equal to $\langle y_i, y_i' \rangle$. If $\langle a_{ij}, a_{ij}' \rangle > \langle y_j, y_j' \rangle$, then the unique value to put in $\langle x_i, x_i' \rangle$ in order to satisfy the equality $\langle x_i, x_i' \rangle \langle a_{ij}, a_{ij}' \rangle = \langle y_j, y_j' \rangle$ is equal to $\langle y_j, y_j' \rangle$. Thus the following result holds.

Theorem 4.723 Let $\Omega \neq 0$. If $\omega(\langle y, y' \rangle, A) = n$, then Ω has a minimum element $\langle \tilde{x}, \tilde{x}' \rangle$. We illustrate this with the following example.

Example 4.824 Let n = 2, (y, y') = ((0.5, 0.3), (0.4, 0.5)) and A by

 $A = \begin{bmatrix} \langle 0.5, 0.3 \rangle & \langle 0.3, 0.5 \rangle \\ \langle 0.8, 0.1 \rangle & \langle 0.5, 0.1 \rangle \end{bmatrix}, \text{ we have } \langle x, x' \rangle = (\langle 1, 0 \rangle \langle 0.4, 0.5 \rangle) \text{ is a solution of } \\ \langle x, x' \rangle A = \langle y, y' \rangle. \text{ Therefore } \Omega \neq \emptyset. \text{ The smallest element is } \\ \langle \tilde{x}, \tilde{x}^i \rangle = (\langle 0.5, 0.3 \rangle, \langle 0.4, 0.5 \rangle). \text{ Further } I_1(\langle \tilde{x}, \tilde{x}^i \rangle) = \{1\} \text{ and } I_2(\langle \tilde{x}, \tilde{x}^i \rangle) = \{2\}. \\ \text{ByTheorem } (4.5) \, \omega(\langle y, y' \rangle, n) = 2. \end{cases}$

Remark 254.9 The condition is not necessary, it is illustrated through the following Example.

Example 4.10 Let n = 2, $\langle y, y' \rangle = (\langle 0.8, 0.2 \rangle, \langle 0.5, 0.3 \rangle)$ and

 $A = \begin{bmatrix} \langle 0.8, 0.1 \rangle & \langle 0.5, 0.4 \rangle \\ \langle 0.6, 0.4 \rangle & \langle 0.5, 0.4 \rangle \end{bmatrix}.$ Since $(\langle 0.8, 0.2 \rangle, \langle 1, 0 \rangle)A = \langle y, y' \rangle, \Omega \neq \emptyset.$ Further,

 $(\langle 0.8, 0.2 \rangle, \langle 0, 1 \rangle)$ is the minimum element of Ω and since the second co-ordinate equal to $\langle 0, 1 \rangle$, we have $\Omega(\langle y, y' \rangle, A) < 2$ by Theorem 4.1.

Again, 0.6((0.8,0.1), (0.5,0.4)) = ((0.6,0.4), (0.5,0.4)) = ((0.6,0.4), (0.5,0.4))

Therefore condition given in Theorem 4.7 is not necessary.

The following example shows that the results can be extended to Intuitionistic Fuzzy matrix equation XA = Y, where A and Y are known IFMs with unknown IFM X.

Example 4.11 Let XA = Y with

 $A = \begin{bmatrix} \langle 0.5, 0.3 \rangle & \langle 0.3, 0.5 \rangle \\ \langle 0.8, 0.1 \rangle & \langle 0.5, 0.1 \rangle \end{bmatrix}, Y = \begin{bmatrix} \langle 0.5, 0.3 \rangle & \langle 0.4, 0.5 \rangle \\ \langle 0.5, 0.2 \rangle & \langle 0.5, 0.2 \rangle \end{bmatrix} \text{ using Definition 2.9, the}$

maximal solution is $\hat{X} = \begin{bmatrix} \langle 1,0 \rangle & \langle 0.4,0.5 \rangle \\ \langle 1,0 \rangle & \langle 0.5,0.2 \rangle \end{bmatrix}$. Let \hat{X}_i, Y_i be the i^{th} rows of \hat{X}, Y . Consider

 $\hat{X}_1 A = Y_1, \hat{X}_2 A = Y_2, \text{ as like in Example 4.10 we can find the smallest}$ elements $\tilde{X}_1 = (\langle 0.5, 0.3 \rangle, \langle 0.4, 0.5 \rangle) \text{ and } \tilde{X}_2 = (\langle 0.5, 0.2 \rangle, \langle 0.5, 0.2 \rangle) \text{ and hence the}$ smallest element is $\tilde{X} = \begin{bmatrix} \langle 0.5, 0.3 \rangle, \langle 0.4, 0.5 \rangle \\ \langle 0.5, 0.2 \rangle, \langle 0.5, 0.2 \rangle \end{bmatrix}.$

Conclusion

In this work only sufficient condition for the existence of minimal solution is presented, work for necessary and sufficient condition for the existence of minimal solution is in progress.

References

- [1] AR. Meenakshi and T. Gandhimathi., Intuitionistic Fuzzy Relational Equations, Advances in Fuzzy Mathematics, Vol. 5(3), (2010), 239-244.
- [2] AR. Meenakshi and T. Gandhimathi., On Regular Intuitionistic Fuzzy Matrices, The Journal of Fuzzy Mathematics, Vol. 19(2), (2011), 599-605.
- [3] Atanassov K., Intuitionistic Fuzzy Sets., VII ITKR's Section, Sofia, June 1983.
- [4] Guo Si-Zhong, Wang Pei-Zhung, A.Di Nola and S.Sessa., Further contribution to the study of Finite Fuzzy Relational Equations, Fuzzy Sets and Systems, Vol. 4, (1998), 93-104.
- [5] Im Young Bim, Eun Pyo Lee and S.W.Park., The determinant of Square Intuitionistic Fuzzy Matrix, Far East Journal of Mathematical Sciences, Vol.3(5), (2001), 789-796.
- [6] Ketty Peeva and Yordan Kyosev., Solving Problems in Intuitionistic Fuzzy Relational Calculus with Fuzzy Relational Calculus Toolbox. Eighth Int. Conf. on Intuitionistic Fuzzy Sets, Varna, 20-21, (2004), NIFS, VOI. 10(3) (2004), 37-43.
- [7] S. Sriram and P. Murugadas., On Semi-ring of Intuitionistic Fuzzy Matrices, Applied Mathematical Science, Vol. 4(23), (2010), 1099-1105.
- [8] S. Sriram and P. Murugadas., Rank and Regularity of Intuitionistic Fuzzy Matrices, Advances in Fuzzy Mathematics, Vol. 5(3), (2010), 335-347.
- [9] P. Murugadas., Contributions to a Study on Generalized Fuzzy Matrices, Ph.D Thesis, Department of Mathematics, Annamalai University, Tamil Nadu, India, (2011).
- [10] Sriram and Murugadas P., Sub-inverses of Intuitionistic Fuzzy Matrices, Acta Ciencia Indica(Mathematics), Vol.XXXVII, M N0.1(2011), 41-56.