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Abstract: A non linear programming problem is a part of mathematical optimization. It is used in many 

problems but does not give exact solution of the problem. In this case, linearization plays an important 

role for solving this type of problems. The present study deals with Non-differentiable Exact Penalty 

method which requires only a single unconstrained problem. Here, three stepsizerules are used: (i) 

Minimization rule (ii) Limited Minimization rule (iii) Armijo rule. Stepsize of linearization method helps 

in the convergence of the function. This paper tells how a stepsize rule can be chosen for convergence of 

the function. 

Keywords: Non-Linear Programming,Stepsize, Exact Penalty Method, Constrained and Unconstrained 

Problem, Linearization Algorithm. 

Introduction: Firstly we will define the problem  

(NLP)                                          Minimize  xf  

                                                   Subject to     0,0  xgxh  

Where ,:,:,: rnmnn RRgRRhRRf  and .nm   

Special Cases of (NLP) are 

 (ECP)                                          Minimize  xf  

 Subject to   0xh  

And 

(ICP)                                          Minimize  xf  

                                                  Subject to   0xg  

Here 1,, Chgf   on nR and the components of h and g are denoted by mhh ,...,1 and 

rgg ,...,1 respectively. 

NOTE: A pair (triple) of vectors is said to be a Kuhn-Tucker (K-T) pair (triple) if it satisfies the first-

order necessary optimality conditions. If  *** ,, x  is a K-T triple for NLP, then it must satisfies 
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      ,0*****   xgxhxf  

      .,...,1,0,0,0,0 ***** rjxgxgxh jj    

Non differentiable Exact Penalty Functions 

In this, we will show that the solutions of (NLP) are related to the solutions of non differentiable 

unconstrained problem 

(NDP)cMinimize    xcPxf   

subject to nRx   

 xP is defined by 

          xhxhxgxgxP mr ,...,,,...,0max 11 and 0c . 

Proposition 1: The vector *x will be strict unconstrained local minimum of cPf   if  





r

j
j

m

i
ic

1

*

1

*   

where the vector *x will be strict local minimum of (NLP) satisfying assumptions, together with 

corresponding Lagrange multiplier vectors * and * . 

Inequality Constrained Problems 

The general problem is defined as 

(ICP)                                          Minimize  xf  

                                                   Subject to   ,0xg  

And for 0c , the corresponding problem 

(NDP)cMinimize    xcPxf   

subject to nRx   

for convenience, we take   nRxxg 00  

so         xgxgxgxP r,...,max 10  

also we denote       rjxPxgjxJ j ,...,1,0,   
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and          xJjdxgcxfdx jc 
'

max;  , for nn RdRx  , and 0c . 

Definition: A point *x is said to be critical point of    xcPxf   if nRd  there exists  

  .0;* dxc  

We can find the descent direction of    xcPxf   only at noncritical points. These directions are 

obtained by the convex quadratic program given below in   ,, 1 nRd   

   JHxQP c ,, minimize   cHdddxf  ''

2

1
 

subject to     ,,
'

Jjdxgxg jj    

where 0c  

H = positive definite matrix 

J = index set containing  xJ , which means 

   rJxJHc ,...,1,0,0,0   

The above quadratic program has unique optimal solution. 

Proposition 2:              dxxcPxfdxcPdxf c ; nn RdRx  , and 

0 andalso   0lim
0







. Then 0 exists when   0; dxc such that  

          ,0 xcPxfdxcPdxf  

(b)   0; '  Hdddxc when  ,d will be the optimal solution of quadratic program    JHxQP c ,,  

with 0d where nRx  , 0H and    rJxJ ,...,1,0 . 

Proposition 3: The quadratic program    JHxQP c ,,*  possess   *,0 xPd   as optimal solution 

for all J and H where 0H and    rJxJ ,...,1,0*  when *x will be critical the point of 

   xcPxf  . 

(b) *x will be critical the point of    xcPxf   whenever   *,0 xPd   will become the optimal 

solution of quadratic program    JHxQP c ,,*  where 0H and    rJxJ ,...,1,0*  . 
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Proposition 4:   **
1

* ,...,, rx   is a K-T pair of (ICP) then corresponding to this  K-T pair, a 

0*
0  exists such that   Jjd j  ** ,0   becomes a K-T pair for quadratic program    JHxQP ,,*

0  

for all J and H where 0H and    rJxJ ,...,1,0*  .  

This result also holds conversely. 

i.e. If we have   Jjd j  ** ,0   as a K-T pair for quadratic program    JHxQP ,,*
0  for some J and 

H where 0H and    rJxJ ,...,1,0*   then   **
1

* ,...,, rx  will be the K-T pair for (ICP). Here 

also Jj  0*
0 . 

Proposition 5:    Jjd j   ,0, will become the K-T pair for    JHxQP c ,, if we have 

  Jjd j ,  as a K-T pair for    JHxQP ,,0 with 






0j

Jj
jc  where also we define  

  






0

0,0,,0

j

Jj
jjj cjJjJJ  . 

Proposition 6: *x will be the critical point of ccPf  , if we have   **
1

* ,...,, rx  as a K-T pair of 

(ICP) where 



r

j
jc

1

* . 

Proposition 7: If the set of gradients     0,  jxJjxg j is linear independent , Xx where 

X is a compact set. Then 0* c exists with *cc  such that: 

(a) A rR* exists such that  ** ,x will become a K-T pair for (ICP) when *x is a critical point 

for cPf  where Xx * . 

(b) *x will become a critical point for cPf  if  ** ,x  becomes a K-T pair for (ICP) where 

Xx * . 

Proposition 8: For every  Xx , where X is a compact set satisfying above conditions, a unique vector 

      xxx r ,...,1  exists, minimizing over  r ,...,1 the function 

           2

1

2

2

1
j

r

j
j

r

j
jjx xgxPxgxfq  



  

Also     **  x , If  ** ,x  is a K-T pair for (ICP) with Xx *  where  . is continuous over X . 

Proposition 9: Suppose that rgg ,...,1 are convex over nR and a vector x exists such that  
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  .,...,10 rjxg j   

And for every compact set 0, * cX exists such that for all *cc  : 

(a) When Xx * and *x is a critical point of cPf  then rR* exists such that  ** ,x  is a K-

T pair for (ICP). 

(b) When Xx * and  ** ,x  is a K-T pair for (ICP), then *x is also a critical point of cPf  .  

The above result will be proved with the help of following Lemma: 

Lemma 10: Let X be a subset of nR i.e. nRX  such that at least one solution of system of inequalities 

in d  

     xJjdxgxg jj  ,0
'

 

exists for each Xx . By fixing 0H and suppose that 0* c , exists with the following properties: 

For each Xx , a set of Lagrange multipliers exists for     xJHxQP ,,0  

    xJjxj   

satisfying  
 





xJj

j xc *  

then *cc  : 

(a) When Xx *  is a critical point of cPf  then rR* exists such that  ** ,x  is a K-T pair 

for (ICP). 

(b) When Xx * and  ** ,x  is a K-T pair for (ICP), then *x is a critical point of cPf  .  

Proposition 11: Suppose that the functions rggf ,...,, 1  are convex over nR and at least one Lagrange 

multiplier vector  **
1

* ,..., r   for (ICP) exists such that ,,...,1,0* rjj  and 

    
 

 xfxgxf
xgRx n 0

* infinf
'


   

Then a vector *x is a global minimum for (ICP) iff *x is a global minimum of cPf  , for every 





r

j
jc

1

* . 

Linearization Algorithms Based on Nondifferentiable Exact Penalty Functions 

(1) Algorithms for Minimax Problems: 

Firstly we will consider the algorithm which will help us for finding critical points of cPf  where 

0c , 
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         n
r RxxgxgxgxP  ,...,,max 10  

  nRxxg 00  

and .,...,1,, 1 rjCgf j  Then we will go further and concentrate on algorithm and check the 

convergence analysis for (ICP). 

Linearization Algorithm: firstly we will choose a vector nRx 0 and the kth iteration of algorithm 

takes a form  

,1 kkkk dxx                                                                                            (1) 

k nonnegative scalar stepsize 

kd direction obtained by quadratic program in  ,d  

   kkkc JHxQP ,, minimize   cdHddxf kk  ''

2

1
 

subject to     kkjkj Jjdxgxg  ,
'  . 

In this  is some positive scalar which will be fixed throughout the algorithm and kH and kJ must satisfy 

   ,,...,1,0,0 rJxJH kkk    

where       ,,...,1,0, rjxPxgjxJ kkjk    

The stepsize k can be chosen by any of stepsizes given below: 

(a) Minimization rule: In this, k is chosen so that 

        kkkkkkkkkk dxcPdxfdxcPdxf 



0

min  

(b) Limited minimization rule: In this a fixed scalar 0s will be selected and k will be chosen so 

that  

   
 

    kkkk
s

kkkkkk dxcPdxfdxcPdxf 



 ,0
min  

(c) Armijo rule: In this we select fixed scalars ,,s and , with  1,0,0  s  and 

,
2

1
,0 








 and by taking ,skm

k   where km is the first nonnegative integer for which 

        kkk
m

k
m

kk
m

kkk dHdsdsxcPdsxfxcPxf '  (2) 

If 0kd , then Armijo rule gives a stepsize after few steps. We can see this also as we also have 

,0  
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             kkckkkkkk dxdxcPdxfxcPxf ;                                          (3) 

   kkk dHd '  

Hence if   ,0 and 0 , then we have     01 '   kkk dHd , using (3) we have 

          ,0'  kkkkkkkkk dHddxcPdxfxcPxf  

Also we have an integer m such that (2) is satisfied. 

When we are implementing algorithm, it is convenient to solve a dual problem instead of solving 

   kkkc JHxQP ,, . Dual problem which involves maximization with respect to Lagrange multipliers 

,, kj Jj  is given by 

            Maximize          

























kkk Jj
kjj

Jj
kjjkk

Jj
kjjk xgxgxfHxgxf  1

'

2

1
 

            Subject to kj
Jj

j Jjallforc
k




0,   

It is easy to solve dual problem as it contains smaller number of variables than    kkkc JHxQP ,, and 

also it has a simpler constraints set. 

CONVERGENCE RESULT: 

Proposition 12: When the sequence  kx is generated by the linearization algorithm and k , the stepsize 

of iteration is chosen by any of the three rules given above then  and  , two positive scalars exists such 

that  

,...1,0,2'2  kRzzzHzz n
k                                              (4) 

Then every limit point of the sequence  kx is a critical point of cPf  . 

If x is not a critical point of cPf   then (4) can be replaced by the condition given below: 

    ,...1,0,2'2 21  kRzzxwzHzzxw nq

kk

q

k  

In this  .w is a continuous function with   0xw and 21 ,qq are two nonnegative scalars. 

The result of above proposition is also holds if Armijo rule takes the form 

         ,; k
m

kck
m

kk
m

kkk dsxdsxcPdsxfxcPxf kkk    

where c  is given by 
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          xcPrjdxgxgcdxfdx jjc  ,...,1,0max;
''                           (5) 

Algorithms for Constrained Optimization Problems 

The inequality constrained problem is given by 

(ICP)                                     minimize  xf  

subject to   rjxg j ,...,1,0   

As we already know that when  ** ,x  will become a K-T pair of (ICP) then there also exists a critical 

point of cPf  provided 



r

j
jc

1

* . For finding the critical values of cPf  , we can apply 

linearization algorithm. But the difficulty with this method is only that we may not know a threshold 
value for c . In this situation, we choose an initial value for c and increase it until we can’t find adequate 

value kc for the algorithm. And suitable value of kc  is 




0j

Jj

k
j

k

 with  k
k
j Jj  , where  k

k
j Jj   are 

Lagrange multipliers which are obtained by solving    kkk JHxQP ,,0 . Also we know that if 








0j

Jj

k
jk

k

c   

then    kkk JHxQP ,,0  and     0,, kkkc JHxQP
k

are equivalent with kd , as a optimal solution of 

the former iff  0,kd is the optimal solution of the latter. Hence by solving    kkk JHxQP ,,0 , we can 

solve     0,, kkkc JHxQP
k

and also we can obtain a suitable value of kc . 

Modified Linearization Algorithm: in this, firstly we select a vector nRx 0 and a penalty parameter 

00 c  and the kth  iteration of the algorithm takes the form 

,, 11 kkkkkk ccdxx     

where k is a stepsize parameter, chosen by any one of stepsize rules given above and here c is replaced 

by kc  which means that here minimization rules takes the form 

        kkkkkkkkkkkk dxPcdxfdxPcdxf 



0

min  

Here the vector kd and the scalar kc are depends upon ,, kk cx a matrix kH and an index set kJ satisfying 

   ,,...,1,0,0 rJxJH kkk    

where       rjxPxgjxJ kkjk ,...,1,0,    

where the scalar 0 is fixed throughout the algorithm. 
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Now we will discuss two cases:  

Case 1: When nRd  exists and satisfying 

    kkjkj Jjallfordxgxg  0
'

                                                    (6) 

In this we take 

   kkk JHxQP ,,0 minimize   dHddxf kk
''

2

1
  

subject to     kkjkj Jjallfordxgxg  0
'

 

and kd is the unique solution of    kkk JHxQP ,,0 . 

Also kc is defined by 







 











otherwisec

cif

c

k

k

j

Jj

k
j

j

Jj

k
j

k
kk

00



 

where k
k
j Jj   = set of Lagrange multipliers for    kkk JHxQP ,,0  

and 0 = scalar, which is fixed throughout the algorithm. 

NOTES: (1) If we have equality constraints of the form   ,0xhi then we can convert this into inequality 

constraints of the form   ,0xhi and   0 xhi . In this case, we take the quadratic program of the 

form 

minimize   dHddxf kk
''

2

1
  

subject to     kkjkj Jjallfordxgxg  0
'

 

    kkiki Iiallfordxhxh  0
'

 

where kI  = an index set containing      kki xPxhi . Now kc becomes 







 


 








 

otherwisec

cif

c

k

k
Ii

k
i

j

Jj

k
j

j

Jj Ii

k
i

k
j

k
kkk k



00
 

where kk
k
i

k
j IiJj  ,,  = set of Lagrange multipliers for quadratic program. 
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(2) We can solve dual problem in kj Jj , instead of solving    kkk JHxQP ,,0 , which is given 

by 

maximize          

























kkk Jj
kjj

Jj
kjjkk

Jj
kjjk xgxgxfHxgxf  1

'

2

1
 

subject to kj Jj  ,0  

Case 2: When nRd  does not exists which satisfies (6). In this case, kd and 0k are the two unique 

solutions of 

   kkkc JHxQP
k

,, minimize   kkkkkk cdHddxf  ''

2

1
 

subject to     kkjkj Jjdxgxg  '
 

here  kk cc  . 

By this, we see that if for the sequence  kx , the system of equation (6) is feasible for an infinite number 

of indices k with k
jJj

k
j c

k


 0,

 then the sequence  kc generated by the above algorithm will be 

unbounded. Otherwise we will get cck  for some 0c and then the above algorithm will be 

equivalent to the linearization algorithm. 
 

Proposition 13: Suppose that a sequence  kx generated by the modified linearization algorithm where 

the stepsize k can be chosen any of the manner either by minimization rule or limited minimization rule 

or the Armijo rule. Suppose that two positive scalars  and  exists such that 

,...1,0,
2'2

 kRzallforzzHzz n
k  

(a) When k and c exists such that 

,kkcck                                                                        (7) 

Then every limit point of the sequence  kx is a critical point of Pcf  . Furthermore if the system of 

inequalities  

    kkjkj Jjdxgxg  0
'

                                                  (8) 

have solution for an infinite set of indices K , every limit point of the sequence  
K

k
kx , is a K-T pair of 

(ICP), where we have for Kk   

 k
r

kk  ,...,1 , 

where    kkk JHxQP ,,0 has  k
k
j Jj   as a set of Lagrange multipliers and 0k

j for kJj  . 

(b) When the functions rgg ,...,1 are convex and a vector nRx  exists such that 

  rjxg j ,...,10   

and kx is bounded, then also every limit point of  k
kx , is a K-T pair of (ICP). 

Conclusion: Stepsize has vital role in Linearization algorithm. In this paper, with Non-Differentiable 

Exact Penalty function, different stepsize functions are discussed. Kuhn-Tucker (K-T) pair and critical 
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points are discussed under certain conditions. Convergence result is also discussed. Linearization 

Algorithms and Modified Linearization Algorithms  based on Non-Differentiable Exact Penalty functions 

are discussed. 
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