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Abstract: A non linear programming problem is a part of mathematical optimization. It is used in many 

problems but does not give exact solution of the problem. In this case, linearization plays an important 

role for solving this type of problems. The present study deals with Non-differentiable Exact Penalty 

method which requires only a single unconstrained problem. Here, three stepsizerules are used: (i) 

Minimization rule (ii) Limited Minimization rule (iii) Armijo rule. Stepsize of linearization method helps 

in the convergence of the function. This paper tells how a stepsize rule can be chosen for convergence of 

the function. 

Keywords: Non-Linear Programming,Stepsize, Exact Penalty Method, Constrained and Unconstrained 
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Introduction: Firstly we will define the problem  

(NLP)                                          Minimize  xf  

                                                   Subject to     0,0  xgxh  

Where ,:,:,: rnmnn RRgRRhRRf  and .nm   

Special Cases of (NLP) are 

 (ECP)                                          Minimize  xf  

 Subject to   0xh  

And 

(ICP)                                          Minimize  xf  

                                                  Subject to   0xg  

Here 1,, Chgf   on nR and the components of h and g are denoted by mhh ,...,1 and 

rgg ,...,1 respectively. 

NOTE: A pair (triple) of vectors is said to be a Kuhn-Tucker (K-T) pair (triple) if it satisfies the first-

order necessary optimality conditions. If  *** ,, x  is a K-T triple for NLP, then it must satisfies 
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      ,0*****   xgxhxf  

      .,...,1,0,0,0,0 ***** rjxgxgxh jj    

Non differentiable Exact Penalty Functions 

In this, we will show that the solutions of (NLP) are related to the solutions of non differentiable 

unconstrained problem 

(NDP)cMinimize    xcPxf   

subject to nRx   

 xP is defined by 

          xhxhxgxgxP mr ,...,,,...,0max 11 and 0c . 

Proposition 1: The vector *x will be strict unconstrained local minimum of cPf   if  





r

j
j

m

i
ic

1

*

1

*   

where the vector *x will be strict local minimum of (NLP) satisfying assumptions, together with 

corresponding Lagrange multiplier vectors * and * . 

Inequality Constrained Problems 

The general problem is defined as 

(ICP)                                          Minimize  xf  

                                                   Subject to   ,0xg  

And for 0c , the corresponding problem 

(NDP)cMinimize    xcPxf   

subject to nRx   

for convenience, we take   nRxxg 00  

so         xgxgxgxP r,...,max 10  

also we denote       rjxPxgjxJ j ,...,1,0,   
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and          xJjdxgcxfdx jc 
'

max;  , for nn RdRx  , and 0c . 

Definition: A point *x is said to be critical point of    xcPxf   if nRd  there exists  

  .0;* dxc  

We can find the descent direction of    xcPxf   only at noncritical points. These directions are 

obtained by the convex quadratic program given below in   ,, 1 nRd   

   JHxQP c ,, minimize   cHdddxf  ''

2

1
 

subject to     ,,
'

Jjdxgxg jj    

where 0c  

H = positive definite matrix 

J = index set containing  xJ , which means 

   rJxJHc ,...,1,0,0,0   

The above quadratic program has unique optimal solution. 

Proposition 2:              dxxcPxfdxcPdxf c ; nn RdRx  , and 

0 andalso   0lim
0







. Then 0 exists when   0; dxc such that  

          ,0 xcPxfdxcPdxf  

(b)   0; '  Hdddxc when  ,d will be the optimal solution of quadratic program    JHxQP c ,,  

with 0d where nRx  , 0H and    rJxJ ,...,1,0 . 

Proposition 3: The quadratic program    JHxQP c ,,*  possess   *,0 xPd   as optimal solution 

for all J and H where 0H and    rJxJ ,...,1,0*  when *x will be critical the point of 

   xcPxf  . 

(b) *x will be critical the point of    xcPxf   whenever   *,0 xPd   will become the optimal 

solution of quadratic program    JHxQP c ,,*  where 0H and    rJxJ ,...,1,0*  . 
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Proposition 4:   **
1

* ,...,, rx   is a K-T pair of (ICP) then corresponding to this  K-T pair, a 

0*
0  exists such that   Jjd j  ** ,0   becomes a K-T pair for quadratic program    JHxQP ,,*

0  

for all J and H where 0H and    rJxJ ,...,1,0*  .  

This result also holds conversely. 

i.e. If we have   Jjd j  ** ,0   as a K-T pair for quadratic program    JHxQP ,,*
0  for some J and 

H where 0H and    rJxJ ,...,1,0*   then   **
1

* ,...,, rx  will be the K-T pair for (ICP). Here 

also Jj  0*
0 . 

Proposition 5:    Jjd j   ,0, will become the K-T pair for    JHxQP c ,, if we have 

  Jjd j ,  as a K-T pair for    JHxQP ,,0 with 






0j

Jj
jc  where also we define  

  






0

0,0,,0

j

Jj
jjj cjJjJJ  . 

Proposition 6: *x will be the critical point of ccPf  , if we have   **
1

* ,...,, rx  as a K-T pair of 

(ICP) where 



r

j
jc

1

* . 

Proposition 7: If the set of gradients     0,  jxJjxg j is linear independent , Xx where 

X is a compact set. Then 0* c exists with *cc  such that: 

(a) A rR* exists such that  ** ,x will become a K-T pair for (ICP) when *x is a critical point 

for cPf  where Xx * . 

(b) *x will become a critical point for cPf  if  ** ,x  becomes a K-T pair for (ICP) where 

Xx * . 

Proposition 8: For every  Xx , where X is a compact set satisfying above conditions, a unique vector 

      xxx r ,...,1  exists, minimizing over  r ,...,1 the function 

           2

1

2

2

1
j

r

j
j

r

j
jjx xgxPxgxfq  



  

Also     **  x , If  ** ,x  is a K-T pair for (ICP) with Xx *  where  . is continuous over X . 

Proposition 9: Suppose that rgg ,...,1 are convex over nR and a vector x exists such that  
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  .,...,10 rjxg j   

And for every compact set 0, * cX exists such that for all *cc  : 

(a) When Xx * and *x is a critical point of cPf  then rR* exists such that  ** ,x  is a K-

T pair for (ICP). 

(b) When Xx * and  ** ,x  is a K-T pair for (ICP), then *x is also a critical point of cPf  .  

The above result will be proved with the help of following Lemma: 

Lemma 10: Let X be a subset of nR i.e. nRX  such that at least one solution of system of inequalities 

in d  

     xJjdxgxg jj  ,0
'

 

exists for each Xx . By fixing 0H and suppose that 0* c , exists with the following properties: 

For each Xx , a set of Lagrange multipliers exists for     xJHxQP ,,0  

    xJjxj   

satisfying  
 





xJj

j xc *  

then *cc  : 

(a) When Xx *  is a critical point of cPf  then rR* exists such that  ** ,x  is a K-T pair 

for (ICP). 

(b) When Xx * and  ** ,x  is a K-T pair for (ICP), then *x is a critical point of cPf  .  

Proposition 11: Suppose that the functions rggf ,...,, 1  are convex over nR and at least one Lagrange 

multiplier vector  **
1

* ,..., r   for (ICP) exists such that ,,...,1,0* rjj  and 

    
 

 xfxgxf
xgRx n 0

* infinf
'


   

Then a vector *x is a global minimum for (ICP) iff *x is a global minimum of cPf  , for every 





r

j
jc

1

* . 

Linearization Algorithms Based on Nondifferentiable Exact Penalty Functions 

(1) Algorithms for Minimax Problems: 

Firstly we will consider the algorithm which will help us for finding critical points of cPf  where 

0c , 
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         n
r RxxgxgxgxP  ,...,,max 10  

  nRxxg 00  

and .,...,1,, 1 rjCgf j  Then we will go further and concentrate on algorithm and check the 

convergence analysis for (ICP). 

Linearization Algorithm: firstly we will choose a vector nRx 0 and the kth iteration of algorithm 

takes a form  

,1 kkkk dxx                                                                                            (1) 

k nonnegative scalar stepsize 

kd direction obtained by quadratic program in  ,d  

   kkkc JHxQP ,, minimize   cdHddxf kk  ''

2

1
 

subject to     kkjkj Jjdxgxg  ,
'  . 

In this  is some positive scalar which will be fixed throughout the algorithm and kH and kJ must satisfy 

   ,,...,1,0,0 rJxJH kkk    

where       ,,...,1,0, rjxPxgjxJ kkjk    

The stepsize k can be chosen by any of stepsizes given below: 

(a) Minimization rule: In this, k is chosen so that 

        kkkkkkkkkk dxcPdxfdxcPdxf 



0

min  

(b) Limited minimization rule: In this a fixed scalar 0s will be selected and k will be chosen so 

that  

   
 

    kkkk
s

kkkkkk dxcPdxfdxcPdxf 



 ,0
min  

(c) Armijo rule: In this we select fixed scalars ,,s and , with  1,0,0  s  and 

,
2

1
,0 








 and by taking ,skm

k   where km is the first nonnegative integer for which 

        kkk
m

k
m

kk
m

kkk dHdsdsxcPdsxfxcPxf '  (2) 

If 0kd , then Armijo rule gives a stepsize after few steps. We can see this also as we also have 

,0  
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             kkckkkkkk dxdxcPdxfxcPxf ;                                          (3) 

   kkk dHd '  

Hence if   ,0 and 0 , then we have     01 '   kkk dHd , using (3) we have 

          ,0'  kkkkkkkkk dHddxcPdxfxcPxf  

Also we have an integer m such that (2) is satisfied. 

When we are implementing algorithm, it is convenient to solve a dual problem instead of solving 

   kkkc JHxQP ,, . Dual problem which involves maximization with respect to Lagrange multipliers 

,, kj Jj  is given by 

            Maximize          

























kkk Jj
kjj

Jj
kjjkk

Jj
kjjk xgxgxfHxgxf  1

'

2

1
 

            Subject to kj
Jj

j Jjallforc
k




0,   

It is easy to solve dual problem as it contains smaller number of variables than    kkkc JHxQP ,, and 

also it has a simpler constraints set. 

CONVERGENCE RESULT: 

Proposition 12: When the sequence  kx is generated by the linearization algorithm and k , the stepsize 

of iteration is chosen by any of the three rules given above then  and  , two positive scalars exists such 

that  

,...1,0,2'2  kRzzzHzz n
k                                              (4) 

Then every limit point of the sequence  kx is a critical point of cPf  . 

If x is not a critical point of cPf   then (4) can be replaced by the condition given below: 

    ,...1,0,2'2 21  kRzzxwzHzzxw nq

kk

q

k  

In this  .w is a continuous function with   0xw and 21 ,qq are two nonnegative scalars. 

The result of above proposition is also holds if Armijo rule takes the form 

         ,; k
m

kck
m

kk
m

kkk dsxdsxcPdsxfxcPxf kkk    

where c  is given by 
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          xcPrjdxgxgcdxfdx jjc  ,...,1,0max;
''                           (5) 

Algorithms for Constrained Optimization Problems 

The inequality constrained problem is given by 

(ICP)                                     minimize  xf  

subject to   rjxg j ,...,1,0   

As we already know that when  ** ,x  will become a K-T pair of (ICP) then there also exists a critical 

point of cPf  provided 



r

j
jc

1

* . For finding the critical values of cPf  , we can apply 

linearization algorithm. But the difficulty with this method is only that we may not know a threshold 
value for c . In this situation, we choose an initial value for c and increase it until we can’t find adequate 

value kc for the algorithm. And suitable value of kc  is 




0j

Jj

k
j

k

 with  k
k
j Jj  , where  k

k
j Jj   are 

Lagrange multipliers which are obtained by solving    kkk JHxQP ,,0 . Also we know that if 








0j

Jj

k
jk

k

c   

then    kkk JHxQP ,,0  and     0,, kkkc JHxQP
k

are equivalent with kd , as a optimal solution of 

the former iff  0,kd is the optimal solution of the latter. Hence by solving    kkk JHxQP ,,0 , we can 

solve     0,, kkkc JHxQP
k

and also we can obtain a suitable value of kc . 

Modified Linearization Algorithm: in this, firstly we select a vector nRx 0 and a penalty parameter 

00 c  and the kth  iteration of the algorithm takes the form 

,, 11 kkkkkk ccdxx     

where k is a stepsize parameter, chosen by any one of stepsize rules given above and here c is replaced 

by kc  which means that here minimization rules takes the form 

        kkkkkkkkkkkk dxPcdxfdxPcdxf 



0

min  

Here the vector kd and the scalar kc are depends upon ,, kk cx a matrix kH and an index set kJ satisfying 

   ,,...,1,0,0 rJxJH kkk    

where       rjxPxgjxJ kkjk ,...,1,0,    

where the scalar 0 is fixed throughout the algorithm. 
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Now we will discuss two cases:  

Case 1: When nRd  exists and satisfying 

    kkjkj Jjallfordxgxg  0
'

                                                    (6) 

In this we take 

   kkk JHxQP ,,0 minimize   dHddxf kk
''

2

1
  

subject to     kkjkj Jjallfordxgxg  0
'

 

and kd is the unique solution of    kkk JHxQP ,,0 . 

Also kc is defined by 







 











otherwisec

cif

c

k

k

j

Jj

k
j

j

Jj

k
j

k
kk

00



 

where k
k
j Jj   = set of Lagrange multipliers for    kkk JHxQP ,,0  

and 0 = scalar, which is fixed throughout the algorithm. 

NOTES: (1) If we have equality constraints of the form   ,0xhi then we can convert this into inequality 

constraints of the form   ,0xhi and   0 xhi . In this case, we take the quadratic program of the 

form 

minimize   dHddxf kk
''

2

1
  

subject to     kkjkj Jjallfordxgxg  0
'

 

    kkiki Iiallfordxhxh  0
'

 

where kI  = an index set containing      kki xPxhi . Now kc becomes 







 


 








 

otherwisec

cif

c

k

k
Ii

k
i

j

Jj

k
j

j

Jj Ii

k
i

k
j

k
kkk k



00
 

where kk
k
i

k
j IiJj  ,,  = set of Lagrange multipliers for quadratic program. 
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(2) We can solve dual problem in kj Jj , instead of solving    kkk JHxQP ,,0 , which is given 

by 

maximize          

























kkk Jj
kjj

Jj
kjjkk

Jj
kjjk xgxgxfHxgxf  1

'

2

1
 

subject to kj Jj  ,0  

Case 2: When nRd  does not exists which satisfies (6). In this case, kd and 0k are the two unique 

solutions of 

   kkkc JHxQP
k

,, minimize   kkkkkk cdHddxf  ''

2

1
 

subject to     kkjkj Jjdxgxg  '
 

here  kk cc  . 

By this, we see that if for the sequence  kx , the system of equation (6) is feasible for an infinite number 

of indices k with k
jJj

k
j c

k


 0,

 then the sequence  kc generated by the above algorithm will be 

unbounded. Otherwise we will get cck  for some 0c and then the above algorithm will be 

equivalent to the linearization algorithm. 
 

Proposition 13: Suppose that a sequence  kx generated by the modified linearization algorithm where 

the stepsize k can be chosen any of the manner either by minimization rule or limited minimization rule 

or the Armijo rule. Suppose that two positive scalars  and  exists such that 

,...1,0,
2'2

 kRzallforzzHzz n
k  

(a) When k and c exists such that 

,kkcck                                                                        (7) 

Then every limit point of the sequence  kx is a critical point of Pcf  . Furthermore if the system of 

inequalities  

    kkjkj Jjdxgxg  0
'

                                                  (8) 

have solution for an infinite set of indices K , every limit point of the sequence  
K

k
kx , is a K-T pair of 

(ICP), where we have for Kk   

 k
r

kk  ,...,1 , 

where    kkk JHxQP ,,0 has  k
k
j Jj   as a set of Lagrange multipliers and 0k

j for kJj  . 

(b) When the functions rgg ,...,1 are convex and a vector nRx  exists such that 

  rjxg j ,...,10   

and kx is bounded, then also every limit point of  k
kx , is a K-T pair of (ICP). 

Conclusion: Stepsize has vital role in Linearization algorithm. In this paper, with Non-Differentiable 

Exact Penalty function, different stepsize functions are discussed. Kuhn-Tucker (K-T) pair and critical 
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points are discussed under certain conditions. Convergence result is also discussed. Linearization 

Algorithms and Modified Linearization Algorithms  based on Non-Differentiable Exact Penalty functions 

are discussed. 

REFERENCES 

[1]. Arrow, K..J., Hurwicz, L., and Uzawa, H., eds.(1958). “Studies in Linear and Nonlinear Programming.” 

Stanford Univ. Press, Stanford. California. 

[2]. Avriel, M. (1976). “Nonlinear Programming: Analysis and Methods.”Prentice-Hall. Englewood Cliffs, 

New Jersey. 

[3]. Bertsekas, Dimitri P. Constrained Optimization and Lagrange multiplier Methods. 

[4]. Bertsekas, D.P. (1974b).Nondifferentiable optimization via approximation. Proc. Annual Allerton Confer. 

Circuit System Theory, 12th, Allerton Park, Ill. Pp.41-52. Also in “mathematical programming Study 

3”(M.Balinski and P. wolfe, eds.) pp.1-25, North-Holland Publ., Amsterdam, 1975. 

[5]. Bertsekas, D.P. (1975c). Combined primal-dual and Penalty methods for constrained optimization. S.J.C. 

13, 521-544. 

[6]. Bertsekas, D.P. (1976a). On penalty and multiplier methods for constrained optimization. S.J.C.O.14, 216-

235. 

[7]. Bertsekas, D.P. (1978). On the convergence properties of second order methods of multipliers. J.O.T.A. 25, 

443-449. 

[8]. Bertsekas, D.P. (1979a). A convergence analysis of the method of multipliers for nonconvex constrained 

optimization. Presented at Proc. Workshop AugumentedLagrangians, IIASA. Vienna. 

[9]. Biggs, M.C. (1978). On the convergence of some constrained minimization algorithms based on recursive 

quadratic programming.J. Inst. Math. Appl. 21, 67-81. 

[10]. Coleman. T.F., and Conn, A.R. (1980a). “Nonlinear Programming via an Exact Penalty Function: 

Asymptotic Analysis,” Computer. Sci. Dept., Rep. CS-80-30. Univ. of Waterloo, M.P., to appear. 

[11]. Coleman. T.F., and Conn, A.R. (1980b). “Nonlinear Programming via an Exact Penalty Function: Global 

Analysis,” Computer. Sci. Dept., Rep. CS-80-31. Univ. of Waterloo, M.P., to appear. 

[12]. DiPillo, G., and Grippo, L.(1979a). A new class of augumentedLagrangians in nonlinear programming. 

S.J.C.O. 17. 618-628. 

[13]. DiPillo, G., and Grippo, L.(1979B). “An AugumentedLagrangian for Inequality Constraints in Nonlinear 

Programming Problems,” Rep. 79-22. Ist Automat., Univ.di Roma. 

[14]. DiPillo, G.,Grippo, L., and Lampariello, F. (1979). “A method for solving equality constrained 

optimization problems by unconstrained minimization. Proc. IFIP Confer. Optim. Tech., 9th, Warsaw pp. 

96-105. 

[15]. Dolccki, S..andRolewicz, S.(1979). Exact penalties for local minima. S.J.C.O. 17, 596-606. 

[16]. Ermoliev, Y.M., shor, N.Z.(1967). On the minimization of nondifferentiable functions.” Kibernetika (kiev) 

3, 101-102. 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1458



[17]. Evans, J.P, Gould, F.J., and Tolle, J.W.(1973). Exact Penalty functions in nonlinear programming. Math. 

Programming 4, 72-97. 

[18]. Fletcher, R.(1973). A class of methods for nonlinear programming :III. Rates of convergence In 

"Numerical methods for Nonlinear Optimization" (F.A.Lootsma,ed.), pp. 371-381. Academic Press, New 

York. 

[19]. Han S. P., and Mangasarian, O.L. (1979). Exact penalty functions in nonlinear programming. M.P. 17,  

251-269. 

[20]. Kort, B.W.(1975a). Combined prima-dual and penalty function algorithms for nonlinear programming. 

Ph.D, thesis, Stanford Univ. Stanford, California. 

[21]. Kort, B. W., and Bertsekas, D.P.(1976). Combined primal-dual and penalty methods for convex 

programming. S.J.C.O. 14, 268-294. 

[22]. McCormick, G.P. (1978). An idealized exact Penalty function. In “Nonlinear programming 3” (O. 

Mangasarian, R. Meyer, and S.Robinson, eds.) pp. 165-195. Academic Press, New York. 

[23]. Mangasarian, O.L. (1969). “Nonlinear Programming.” Prentice – Hall, Englewood Cliffs, New Jersey. 

[24]. Mangasarian, O.L. (1974). Unconstrained methods in optimization. Proc. Allerton Conf. Circuit system 

Theory, 12th, Univ, Ill., Urbana pp. 153-160. 

[25]. Mangasarian, O.L. (1975). Unconstrained Lagrangians in nonlinear programming. S.J.C.13, 772-791. 

[26]. Maratos, N.(1978). Exact penalty function algorithms for finite dimensional and control optimization 

problems. Ph.D. Thesis. Imperical College sci. Tech., Univ. of London. 

[27]. Mayne, D. Q., and Maratos, N. (1979). A first order exact penalty function algorithm for equality 

constrained optimization problems. M.P. 16, 303-324. 

[28]. Papa Vassilopoulos, G. (1977). Algorithms for a class of nondifferentiable problems. M.S. Thesis. Dept. 

Electr. Engr. Univ. of Illinosis, Urbana. Also J.O.T.A. 34, (1981), 41-82. 

[29]. Robinson, S.M. (1974). Perturbed Khun – Tucker points and rates of convergence for a class of nonlinear 

programming algorithms. M.P.7, 1-16. 

[30]. Zanwill, W.I. (1967b). Nonlinear programming via penalty functions. M.S.13, 344-358. 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1459


