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Abstract

In this paper, we establish the existence of at least three positive so-
lutions for 3nth order three-point boundary value problem on time scales
by using Avery generalization of the Leggett–Williams fixed point the-
orem.
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1 Introduction

The theory of time scales [5, 6] was initiated by Hilger [11] in his Ph.D. thesis
in 1988. This theory unifies not only continuous and discrete theory, but also
provide accurate information of phenomena that manifest themselves partly in
continuous time and partly in discrete time. This theory is widely applied to
various real life situations like epidemic models, stock market, mathematical
modeling of physical and biological systems and certain economically impor-
tant phenomena contain processes that feature elements of both continuous
and discrete.

The existence of positive solutions of the higher order boundary value prob-
lems (BVPs) on time scales have been studied extensively due to their striking
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applications to almost all area of science, engineering and technology. To men-
tion a few papers along these lines are Henderson [10], Chyan [9], Anderson
et.al [1, 2, 3], Cetin and Topal [7, 8], Hu and Zhou [12], Prasad and Sreedhar
[13, 14, 15] and Yaslan [16, 17].

In this paper, we are concerned with the existence of positive solutions for
3nth order BVP on time scales,

(−1)ny∆
(3n)

(t) = f(y(t), y∆
(3)

(t), y∆
(6)

(t), ..., y∆
(3n−3)

(t)), t ∈ [t1, σ(t3)] (1.1)

satisfying the general three-point boundary conditions,

α3i−2,1y
∆(3i−3)

(t1) + α3i−2,2y
∆(3i−2)

(t1) + α3i−2,3y
∆(3i−1)

(t1) = 0,

α3i−1,1y
∆(3i−3)

(t2) + α3i−1,2y
∆(3i−2)

(t2) + α3i−1,3y
∆(3i−1)

(t2) = 0,

α3i,1y
∆(3i−3)

(σ(t3)) + α3i,2y
∆(3i−2)

(σ(t3)) + α3i,3y
∆(3i−1)

(σ(t3)) = 0,

 (1.2)

for 1 ≤ i ≤ n, where n ≥ 1, α3i−2,j, α3i−1,j, α3i,j, for j = 1, 2, 3, are real
constants, t1 < t2 < σ(t3) and f : R+n → R+ is continuous.

For convenience, we use the following notations. For 1 ≤ i ≤ n, let us
denote βij = α3i−3+j,1tj + α3i−3+j,2, γij = α3i−3+j,1t

2
j + α3i−3+j,2(tj + σ(tj)) +

2α3i−3+j,3, where j = 1, 2; βi3 = α3i,1σ(t3) + α3i,2 and γi3 = α3i,1(σ(t3))
2 +

α3i,2(σ(t3) + σ2(t3)) + 2α3i,3. Also, for 1 ≤ i ≤ n, we define

mijk =
α3i−3+j,1γik − α3i−3+k,1γij

2(α3i−3+j,1βik − α3i−3+k,1βij)
, Mijk =

βijγik − βikγij
α3i−3+j,1βik − α3i−3+k,1βij

,

where j, k = 1, 2, 3 and let pi = max{mi12 ,mi13 ,mi23},

qi = min

{
mi23 +

√
m2

i23
−Mi23 , mi13 +

√
m2

i13
−Mi13

}
,

di = α3i−2,1(βi2γi3 −βi3γi2)−βi1(α3i−1,1γi3 −α3i,1γi2)+γi1(α3i−1,1βi3 −α3i,1βi2)
and lij = α3i−3+j,1σ(s)σ

2(s) − βij(σ(s) + σ2(s)) + γij , where j = 1, 2, 3. We
assume the following conditions throughout this paper:

(A1) α3i−2,1 > 0, α3i−1,1 > 0, α3i,1 > 0 and
α3i,2

α3i,1
>

α3i−1,2

α3i−1,1
>

α3i−2,2

α3i−2,1
,

for all 1 ≤ i ≤ n,

(A2) pi ≤ t1 < t2 < σ(t3) ≤ qi and 2α3i−2,3α3i−2,1 > α2
3i−2,2,

2α3i−1,3α3i−1,1 < α2
3i−1,2, 2α3i,3α3i,1 > α2

3i,2, for all 1 ≤ i ≤ n,

(A3) m2
i23
> Mi23 , m

2
i12
< Mi12 , m

2
i13
> Mi13 and di > 0, for all 1 ≤ i ≤ n,

(A4) The point t ∈ [t1, σ(t3)] is not left dense and right scattered at the same
time.
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Triple Positive Solutions 3

The rest of the paper is organized as follows. In Section 2, we construct
the Green’s function for the homogeneous problem corresponding to (1.1)-
(1.2) and estimate bounds for the Green’s function. In Section 3, we establish
a criteria for the existence of at least three positive solutions for the BVP
(1.1)-(1.2) by using Avery generalization of the Leggett–Williams fixed point
theorem.

2 Green’s function and bounds

In this section, we construct the Green’s function for the homogeneous prob-
lem corresponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

For 1 ≤ i ≤ n, let Gi(t, s) be the Green’s function for the homogeneous
BVP,

−y∆3

(t) = 0, t ∈ [t1, σ(t3)], (2.1)

satisfying the general three-point boundary conditions,

α3i−2,1y(t1) + α3i−2,2y
∆(t1) + α3i−2,3y

∆2

(t1) = 0,

α3i−1,1y(t2) + α3i−1,2y
∆(t2) + α3i−1,3y

∆2

(t2) = 0,

α3i,1y(σ(t3)) + α3i,2y
∆(σ(t3)) + α3i,3y

∆2

(σ(t3)) = 0.

 (2.2)

Lemma 2.1 For 1 ≤ i ≤ n, the Green’s function Gi(t, s) for the homogeneous
BVP (2.1)-(2.2) is given by

Gi(t, s) =



Gi(t,s)
t∈[t1,t2] =


Gi1(t, s), t1 < σ(s) < t ≤ t2 < σ(t3)
Gi2(t, s), t1 ≤ t < s < t2 < σ(t3)
Gi3(t, s), t1 ≤ t < t2 < s < σ(t3)

Gi(t,s)
t∈[t2,σ(t3)] =


Gi4(t, s), t1 < t2 < σ(s) < t ≤ σ(t3)
Gi5(t, s), t1 < t2 ≤ t < s < σ(t3)
Gi6(t, s), t1 ≤ σ(s) < t2 < t < σ(t3)

(2.3)

where

Gi1(t, s) =
1

2di
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 ,

Gi2(t, s) =
1

2di
{[−(βi1γi3 − βi3γi1) + t(α3i−2,1γi3 − α3i,1γi1)− t2(α3i−2,1βi3−

α3i,1βi1)]li2 + [(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1)+

t2(α3i−2,1βi2 − α3i−1,1βi1)]li3},
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Gi3(t, s) =
1

2di
[(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi4(t, s) =
1

2di
{[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 + [(βi1γi3 − βi3γi1)− t(α3i−2,1γi3 − α3i,1γi1)+

t2(α3i−2,1βi3 − α3i,1βi1)]li2},

Gi5(t, s) =
1

2di
[(βi1γi2 − βi2γi1)− t(α3i−2,1γi2 − α3i−1,1γi1) + t2(α3i−2,1βi2−

α3i−1,1βi1)]li3 ,

Gi6(t, s) =
1

2di
[−(βi2γi3 − βi3γi2) + t(α3i−1,1γi3 − α3i,1γi2)− t2(α3i−1,1βi3−

α3i,1βi2)]li1 .

Lemma 2.2 Assume that the conditions (A1)-(A4) are satisfied. Then, for
1 ≤ i ≤ n, the Green’s function Gi(t, s) satisfies the following inequality,

miGi(σ(s), s) ≤ Gi(t, s) ≤ Gi(σ(s), s), for all (t, s) ∈ [t1, σ(t3)]× [t1, t3],
(2.4)

where

0 < mi = min

{
Gi1(σ(t3), s)

Gi1(t1, s)
,
Gi3(t1, s)

Gi3(σ(t3), s)
,
Gi2(t1, s)

Gi2(σ(t3), s)
,
Gi4(σ(t3), s)

Gi4(t1, s)

}
< 1.

Lemma 2.3 Assume that the conditions (A1)-(A4) are satisfied and Gi(t, s)
as in (2.3). Let us take H1(t, s) = G1(t, s) and recursively define

Hj(t, s) =

∫ σ(t3)

t1

Hj−1(t, r)Gj(r, s)∆r,

for 2 ≤ j ≤ n, then Hn(t, s) is the Green’s function for the homogeneous BVP
corresponding to (1.1)-(1.2).

Lemma 2.4 Assume that the conditions (A1)-(A4) holds. If we define

K =
n−1∏
j=1

Kj and L =
n−1∏
j=1

mjLj,

then the Green’s function Hn(t, s) in Lemma 2.3 satisfies

0 ≤ Hn(t, s) ≤ K∥Gn(., s)∥, for all (t, s) ∈ [t1, σ(t3)]× [t1, t3]
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Triple Positive Solutions 5

and

Hn(t, s) ≥ mnL∥Gn(., s)∥, for all (t, s) ∈ [t2, σ(t3)]× [t1, t3],

where mn is given as in Lemma 2.2,

Kj =

∫ σ(t3)

t1

∥Gj(., s)∥∆s > 0, for 1 ≤ j ≤ n,

Lj =

∫ σ(t3)

t2

∥Gj(., s)∥∆s > 0, for 1 ≤ j ≤ n

and ∥.∥ is defined by

∥x∥ = max
t∈[t1,σ(t3)]

|x(t)|.

Let D = {v|v : C[t1, σ(t3)]}. For each 1 ≤ j ≤ n − 1, define the operator
Tj : D → D by

Tjv(t) =

∫ σ(t3)

t1

Hj(t, s)v(s)∆s, t ∈ [t1, σ(t3)]

and these integrals are converges. By the construction of Tj and the properties
of Hj(t, s), it is clear that

(−1)j(Tjv)
(∆∇)j(t) = v(t), t ∈ [t1, σ(t3)],

α3i−2,1(Tjv)
∆(3i−3)

(t1) + α3i−2,2(Tjv)
∆(3i−2)

(t1) + α3i−2,3(Tjv)
∆(3i−1)

(t1) = 0,

α3i−1,1(Tjv)
∆(3i−3)

(t2) + α3i−1,2(Tjv)
∆(3i−2)

(t2) + α3i−1,3(Tjv)
∆(3i−1)

(t2) = 0,

α3i,1(Tjv)
∆(3i−3)

(σ(t3)) + α3i,2(Tjv)
∆(3i−2)

(σ(t3)) + α3i,3(Tjv)
∆(3i−1)

(σ(t3)) = 0,

for 1 ≤ i ≤ j. Hence, we see that the BVP (1.1)-(1.2) has a solution if and
only if the following BVP has a solution,

v∆
3

(t) + f(Tn−1v(t), Tn−2v(t), ..., T1v(t), v(t)) = 0, t ∈ [t1, σ(t3)] (2.5)

α3i−2,1v(t1) + α3i−2,2v
∆(t1) + α3i−2,3v

∆2

(t1) = 0,

α3i−1,1v(t2) + α3i−1,2v
∆(t2) + α3i−1,3v

∆2

(t2) = 0,

α3i,1v(σ(t3)) + α3i,2v
∆(σ(t3)) + α3i,3v

∆2

(σ(t3)) = 0,

 (2.6)

for i = n − 1. Indeed, if y is a solution of the BVP (1.1)-(1.2), then v(t) =

y∆
(3n−3)

(t) is a solution of the BVP (2.5)-(2.6). Conversely, if v is a solution of
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the BVP (2.5)-(2.6), then y(t) = Tn−1v(t) is a solution of the BVP (1.1)-(1.2).
In fact, y(t) is represented as

y(t) =

∫ σ(t3)

t1

Hn−1(t, s)v(s)∆s,

where

v(s) =

∫ σ(t3)

t1

Gn(s, τ)f(Tn−1v(τ), Tn−2v(τ), ..., T1v(τ), v(τ))∆τ.

3 Triple positive solutions

In this section, we establish the existence of at least three positive solutions
for the BVP (1.1)-(1.2), by using Avery generalization of the Leggett–Williams
fixed point theorem.

Let B be a real Banach space with cone P . A map α : P → [0, ∞) is said
to be a nonnegative continuous concave functional on P if α is continuous and

α(λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y),

for all x, y ∈ P and λ ∈ [0, 1]. Similarly, we say that a map β : P → [0, ∞) is
said to be a nonnegative continuous convex functional on P if β is continuous
and

β(λx+ (1− λ)y) ≤ λβ(x) + (1− λ)β(y),

for all x, y ∈ P and λ ∈ [0, 1]. Let γ, β, θ be nonnegative continuous convex
functional on P and α, ψ be nonnegative continuous concave functionals on
P , then for nonnegative numbers h′, a′, b′, d′ and c′, we define the following
convex sets

P (γ, c′) = {y ∈ P |γ(y) < c′},

P (γ, α, a′, c′) = {y ∈ P |a′ ≤ α(y), γ(y) ≤ c′},

Q(γ, β, d′, c′) = {y ∈ P |β(y) ≤ d′, γ(y) ≤ c′},

P (γ, θ, α, a′, b′, c′) = {y ∈ P |a′ ≤ α(y), θ(y) ≤ b′, γ(y) ≤ c′},

Q(γ, β, ψ, h′, d′, c′) = {y ∈ P |h′ ≤ ψ(y), β(y) ≤ d′, γ(y) ≤ c′}.

In obtaining multiple positive solutions of the BVP (1.1)-(1.2), the fol-
lowing Avery generalization of the Leggett–Williams fixed point theorem, so
called Five Functionals Fixed Point Theorem will be fundamental.
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Theorem 3.1 [4] Let P be a cone in a real Banach space B. Suppose α and
ψ are nonnegative continuous concave functionals on P and γ, β and θ are
nonnegative continuous convex functionals on P such that, for some positive
numbers c′ and k,

α(y) ≤ β(y) and ∥ y ∥≤ kγ(y), for all y ∈ P (γ, c′).

Suppose further that T : P (γ, c′) → P (γ, c′) is completely continuous and there
exist constants h′, d′, a′, b′ ≥ 0 with 0 < d′ < a′ such that each of the following
is satisfied.
(B1) {y ∈ P (γ, θ, α, a′, b′, c′)|α(y) > a′} ̸= ∅ and

α(Ty) > a′, for y ∈ P (γ, θ, α, a′, b′, c′),
(B2) {y ∈ Q(γ, β, ψ, h′, d′, c′)|β(y) < d′} ̸= ∅ and

β(Ty) < d′, for y ∈ Q(γ, β, ψ, h′, d′, c′),
(B3) α(Ty) > a′, provided y ∈ P (γ, α, a′, c′) with θ(Ty) > b′,
(B4) β(Ty) < d′, provided y ∈ Q(γ, β, d′, c′) with ψ(Ty) < h′.
Then T has at least three fixed points y1, y2, y3 ∈ P (γ, c′) such that

β(y1) < d′, a′ < α(y2) and d′ < β(y3) with α(y3) < a′.

Let

M = mn

n−1∏
j=1

mjLj

Kj

(3.1)

Let B = {v|v : C[t1, σ(t3)]} be the Banach space equipped with the norm

∥v∥ = max
t∈[t1,σ(t3)]

|v(t)|.

Define the cone P ⊂ B by

P =
{
v ∈ B : v(t) ≥ 0 on [t1, σ(t3)] and mint∈[t2,σ(t3)] v(t) ≥M∥v∥

}
,

where M is given as in (3.1). Now, let I1 =
[
t2+t3

3
, σ(t3)

]
and define the non-

negative continuous concave functionals α, ψ and the nonnegative continuous
convex functionals β, θ, γ on P by

γ(v) = max
t∈[t1,σ(t3)]

|v(t)|, ψ(v) = min
t∈I1

|v(t)|, β(v) = max
t∈I1

|v(t)|,

α(v) = min
t∈[t2,σ(t3)]

|v(t)| and θ(v) = max
t∈[t2,σ(t3)]

|v(t)|.

We observe that for any v ∈ P ,

α(v) = min
t∈[t2,σ(t3)]

|v(t)| ≤ max
t∈I1

|v(t)| = β(v) (3.2)
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and

∥v∥ ≤ 1

M
min

t∈[t2,σ(t3)]
v(t) ≤ 1

M
max

t∈[t1,σ(t3)]
|v(t)| = 1

M
γ(v). (3.3)

We are now ready to present the main result of this section. We denote

Mj =

∫
s∈I1

∥Gj(., s)∥∆s, for 1 ≤ j ≤ n.

Theorem 3.2 Suppose there exist 0 < a′ < b′ < b′

M
≤ c′ such that f satisfies

the following conditions:
(A1) f(un−1, un−2, ..., u1, u0) <

a′

Kn
, for all (|un−1|, |un−2|, ..., |u1|, |u0|) in

Π1
j=n−1[mjLMa′Mj,

c′KKj

M
]× [Ma′, a′],

(A2) f(un−1, un−2, ..., u1, u0) >
b′

MKn
, for all (|un−1|, |un−2|, ..., |u1|, |u0|) in

Π1
j=n−1[mjLb

′Lj,
c′KKj

M
]× [b′, b′

M
],

(A3) f(un−1, un−2, ..., u1, u0) <
c′

Kn
, for all (|un−1|, |un−2|, ..., |u1|, |u0|) in

Π1
j=n−1[0,

c′KKj

M
]× [0, c′].

Then the BVP (1.1)-(1.2) has at least three positive solutions.

Proof: Define the operator T : P → B by

Tv(t) =

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s. (3.4)

It is obvious that a fixed point of T is the solution of the BVP (2.5)-(2.6). We
seek three fixed points v1, v2, v3 ∈ P of T . First, we show that T : P → P .
Let v ∈ P . Clearly, Tv(t) ≥ 0, for t ∈ [t1, σ(t3)]. Also, noting that Tv satisfies
the boundary conditions (2.6). Then, we have

min
t∈[t2,σ(t3)]

Tv(t) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M
∫ σ(t3)

t1

Gn(s, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M
∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M∥Tv∥.

Hence, Tv ∈ P and so T : P → P . Moreover, T is completely continuous.
From (3.2) and (3.3), for each v ∈ P , we have α(v) ≤ β(v) and ∥v∥ ≤ 1

M
γ(v).
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Triple Positive Solutions 9

To show that T : P (γ, c′) → P (γ, c′). Let v ∈ P (γ, c′). This implies ∥v∥ ≤ c′

M
.

Using Lemma 2.4, for 1 ≤ j ≤ n− 1 and t ∈ [t1, σ(t3)], we have

Tjv(t) =

∫ σ(t3)

t1

Hj(t, s)v(s)∆s

≤ c′

M

∫ σ(t3)

t1

Hj(t, s)∆s

≤ c′

M
K

∫ σ(t3)

t1

∥Gj(., s)∥∆s =
c′KKj

M
.

We may now use condition (A3) to obtain

γ(Tv) = max
t∈[t1,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≤ c′

Kn

∫ σ(t3)

t1

Gn(s, s)∆s = c′.

Therefore, T : P (γ, c′) → P (γ, c′).
We first verify that conditions (B1), (B2) of Theorem 3.1 are satisfied. It

is obvious that

{v ∈ P (γ, θ, α, b′,
b′

M
, c′)|α(v) > b′} ̸= ∅

and
{v ∈ Q(γ, β, ψ,Ma′, a′, c′)|β(v) < a′} ̸= ∅.

Next, let v ∈ P (γ, θ, α, b′, b′

M
, c′) or v ∈ Q(γ, β, ψ,Ma′, a′, c′).

Then, for 1 ≤ j ≤ n− 1,

Tjv(t) =

∫ σ(t3)

t1

Hj(t, s)v(s)∆s

≤ c′

M

∫ σ(t3)

t1

Hj(t, s)∆s

≤ c′

M
K

∫ σ(t3)

t1

∥Gj(., s)∥∆s =
c′KKj

M

and for v ∈ P (γ, θ, α, b′, b′

M
, c′),

Tjv(t) =

∫ σ(t3)

t1

Hj(t, s)v(s)∆s

≥ mjLb
′
∫ σ(t3)

t2

∥Gj(., s)∥∆s = mjLb
′Lj.
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and also for v ∈ Q(γ, β, ψ,Ma′, a′, c′),

Tjv(t) =

∫ σ(t3)

t1

Hj(t, s)v(s)∆s

≥ mjLMa′
∫
s∈I1

∥Gj(., s)∥∆s = mjLMa′Mj.

Now, we may apply condition (A2) to get

α(Tv) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M

∫ σ(t3)

t1

Gn(s, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥ b′

Kn

∫ σ(t3)

t1

Gn(s, s)∆s = b′.

Clearly, by condition (A1), we have

β(Tv) = max
t∈I1

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≤ a′

Kn

∫ σ(t3)

t1

Gn(s, s)∆s = a′.

To see that (B3) is satisfied, let v ∈ P (γ, α, b′, c′) with θ(Tv) > b′

M
. Using

Lemma 2.4, we get

α(Tv) = min
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M

∫ σ(t3)

t1

Gn(s, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M max
t∈[t1,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≥M max
t∈[t2,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

=Mθ(Tv) > b′.

Finally, we show that (B4) holds. Let v ∈ Q(γ, β, a′, c′) with ψ(Tv) < Ma′.
In view of Lemma 2.4, we have

β(Tv) = max
t∈I1

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s
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≤ max
t∈[t1,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≤
∫ σ(t3)

t1

Gn(s, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

=
1

M

∫ σ(t3)

t1

MGn(s, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≤ 1

M
min

t∈[t2,σ(t3)]

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

≤ 1

M
min
t∈I1

∫ σ(t3)

t1

Gn(t, s)f(Tn−1v(s), Tn−2v(s), ..., T1v(s), v(s))∆s

=
1

M
ψ(Tv) < a′.

We have proved that all the conditions of Theorem 3.1 are satisfied and so there
exist at least three positive solutions v1, v2, v3 ∈ P (γ, c′) for the BVP (2.5)-
(2.6). Therefore, the BVP (1.1)-(1.2) has at least three positive solutions y1,
y2, y3 of the form,

yi(t) = Tn−1vi(t) =

∫ σ(t3)

t1

Hn−1(t, s)vi(s)∆s, i = 1, 2, 3.

This completes the proof. 2
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