
A Structured Visual Approach to GALS Modeling for 

Communication Circuits 
1Ravula S S V Tulasi Raja Priyanthi (M.Tech)2 k.surya kumarai (M.Tech,(Ph.D), Assistant Professor)    

1,2Pragati Engineering College, Surampalem, East godavari, Andhra Pradesh, INDIA 

1rssvtrpriyanthi@gmail.com 2kumarisep19@gmail.com 

Abstract: In this paper, a novel globally asynchronous 

locally synchronous (GALS) modeling and verification 

is exploited in presenting a new unfolding algorithm 

that uses structured occurrence nets. A novel 

representation for deadlocks is introduced using 

deadlock relations enabling the causality of local and 

global dead-locks to be visualized. This helps in the 

investigation of total or partial system shutdown. In 

particular, the approach enables the visualization of 

point-to-point causality of problems occurring between 

different parts of the system which are more difficult to 

analyze. In addition different types of deadlock related 

to the synchronizer can be detected. The work 

presented here provides structured visualization 

capability facilitating the analysis of complex 

communication systems. Synthesis and Simulation is 

done using Xilinx tool. 

 

Index Terms— Analysis, model checking, GALS 

modeling, verification. 

 

I. INTRODUCTION 

WHILST there has been a lot of interest in 

researching new architectures for globally 

asynchronous locally synchronous (GALS), there have 

been few attempts at providing modeling solutions for 

GALS communication. Thus, modeling of GALS from 

specifications has been limited to hardware description 

languages such as Verilog, VHDL, or synchronous 

programming languages such as C or ESTEREL. 

Specialist verification languages that have been 

introduced for GALS include GALS representation 

language and process calculi but these languages tend 

to be used at a higher level of abstraction than 

hardware. A graphical tool has been developed in [7] 

but the models here are also used at a higher level, i.e., 

they are not used for circuit deadlock analysis. xMAS 

model checking has been covered extensively at the 

Boolean level for purposes like deadlock checking little 

work has been done using net level models such as 

Petri nets. Basic techniques for GALS verification 

were also presented including unfolding to occurrence 

nets. 

Introduction to GALS Circuits. 

 The increased complexity of digital 

circuits leads to severe challenges in the design 

process. Most modern digital systems are implemented 

as SoCs. Consequently, system integration has become 

a crucial problem. The modern design flow should 

incorporate all possible tools for coping with these 

issues. A promising option for dealing with such design 

challenges is the deployment of globally asynchronous, 

locally synchronous (GALS) systems. A GALS system 

consists of complex digital blocks operating 

synchronously. Those blocks are usually developed 

using standard synchronous CAD tools and design 

flow. However, the operation of the blocks is not 

mutually synchronized hence the term locally 

synchronous. These locally synchronous blocks 

communicate with one another asynchronously; on the 

block level (globally), the system is asynchronous. A 

common approach is to add an asynchronous wrapper, 

which provides an interface from the synchronous to 

the asynchronous environment (and vice versa), to 

every locally synchronous block. The intention of such 

an environment is to make it easier to gain visual 

insight into the causality of complex structural 

problems that may arise, such as deadlocks in GALS 

systems. 

The main contributions of this paper are as follows.  

1)A workflow for structured visual modeling and 

verification of GALS communication circuits.  

2) A new approach to deadlock analysis based on 

deadlock relations. 

 II. LITERATURE REVIEW 

 

Verification of GALS Systems by Combining 

Synchronous Languages and Process Calculi. 

A Gals (Globally Asynchronous Locally Synchronous) 

system typically consists of a collection of sequential, 

deterministic components that execute concurrently 

and communicate using slow or unreliable channels. 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1718



This paper proposes a general approach for modeling 

and verifying Gals systems using a combination of 

synchronous languages (for the sequential components) 

and process calculi (for communication channels and 

asynchronous concurrency). This approach is 

illustrated with an industrial case-study provided by 

Airbus: a TftpUdp communication protocol between a 

plane and the ground, which is modeled using the 

Eclipse/Topcased workbench for model-driven 

engineering and then analyzed formally using the Cadp 

verification and performance evaluation toolbox. 

 

Verifying deadlock freedom of communication 

fabrics. 

Avoiding message dependent deadlocks in 

communication fabrics is critical for modern 

microarchitectures. If discovered late in the design 

cycle, deadlocks lead to missed project deadlines and 

suboptimal design decisions. One approach to avoid 

this problem is to get high level of confidence on an 

early microarchitectural model. However, formal 

proofs of liveness even on abstract models are hard due 

to large number of queues and distributed control. In 

this work we address liveness verification of 

communication fabrics described in the form of high-

level microarchitectural models which use a small set 

of well-defined primitives. We prove that under certain 

realistic restrictions, deadlock freedom can be reduced 

to unsatisfiability of a system of Boolean equations. 

Using this approach, we have automatically verified 

liveness of several non-trivial models (derived from 

industrial microarchitectures), where state-of-the-art 

model checkers failed and pen and paper proofs were 

either tedious or unknown. 

 

III. GALS MODELING 

Several GALS methods address the problem 

of safe and reliable data transfer between independent 

clock domains. Taxonomy based on the hardware 

architecture used to transfer data safely. This leads to 

three main strategies for implementing GALS systems:  

 Pausible-clock generators—applying local 

(pausible, stretchable, or data-driven) 

clocking, which avoids metastability by 

ensuring no clock pulses are generated when 

data is transferred.  

  FIFO buffers—using asynchronous FIFO 

buffers between locally synchronous blocks to 

hide the synchronization problem. 

 Boundary synchronization—performing 

boundary synchronization on the signals 

crossing the borders of the locally 

synchronous island without stopping the 

complete locally synchronous block during 

data transfer. 

 
Figure 1. Globally asynchronous, locally 

synchronous (GALS) system with pausible clocking 

GALS Asynchronous Primitive: 

  In addition to the standard xMAS symbols for 

all the basic primitives an asynchronous 

synchronization primitive has been added. The 

primitive is used for inserting asynchronous “glue” 

components in communication channels that cross 

clock domains. The interface signals are defined using 

the xMAS format so that it can be interfaced to other 

xMAS primitives. The synchronization primitive is 

shown in Fig. 2. The new asynchronous primitive is 

generic and incorporates a number of synchronization 

schemes. A black box is used to house the specific 

implementation style used for synchronization, which 

is designed to accommodate different GALS 

implementation styles: asynchronous, mesochronous, 

pausible clocking, etc. 

 
Fig.2 synchronization primitive 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1719



Synchronizer Modeling. 

The basic synchronizer schemes provided by 

the tool are as follows.  

1) Asynchronous—an implementation based 

on the use of synchronizers to transfer signals arriving 

from an outside timing domain to the local timing 

domain, e.g., two flipflops to synchronize a signal with 

the local clock.  

2) Mesochronous—an implementation in 

which clocks are derived from the same source and the 

bounds on the frequencies of communicating blocks 

are exploited to meet the timing requirements.  

3) Pausible—an implementation based on ring 

oscillators in which each locally synchronous block 

generates its own clock with a ring oscillator. An 

implementation style that is provided for the 

asynchronous scheme is shown in Fig.3. The 

implementation in Fig. 3 uses a first in first out (FIFO) 

and synchronizer circuits to transfer signals between 

the global timing domain and the local timing domain. 

In this implementation the FIFO buffer handshake 

signals may be asserted at any time relative to the 

transmitter or receiver clocks. The net model used for a 

synchronizer circuit which uses two flip-flops is 

depicted in Fig.4. In Fig. 4, for the pair of signals 

comprising the synchronizer circuit, the transitions 

have a level of prioritization which 

 
Fig. 3. Asynchronous synchronization. 

 

 
 

Fig. 4. Synchronizer circuit. 

is similar to the level that was assigned to the queue 

loading in (1). This is required in order to give the flip-

flops a lower priority than the other communication 

signals. 

 

IV. PROPOSED SYSTEM 

The xMAS models are verified by a process of 

unfolding to occurrence nets and deadlock analysis. 

For normal verifica-tion as used in the unfolding 

proceeds to occurrence nets using basic GALS 

unfolding. For structured net verification the net is 

translated from xMAS but the unfolding is made to 

SONs rather than Occurrence nets. A SON is a set of 

related occurrence nets linked together by specific 

types of relation. The type of relation determines the 

class of the SON. 

The CSONs are limited to 1-safe communication 

only. One-safe implies a limit of one token per place in 

the CPN which is a necessary requirement for CPNs. A 

CSON is a tuple CSON = (ON1, . . . , ONk, P0, l0, F0) 

consisting of k occurrence nets where k ≥ 1 such that 

each ONi = (Pi, Ti , Fi , li) is an occurrence net, P0 is a 

set of channel places (CPs) linking the occurrence nets 

together (the communication occurs across the CPs), l0 

is a labeling of P0 and a flow relation 

 

F0 ⊆ (T × P0) ∪ (P0 × T ), where T  =i≥1 Ti . 

A. Unfolding 

For unfolding the GALS model is mapped to SONs 

and the local modules LN are mapped to ordinary 

occurrence nets. The nets are mapped in a specific way 

to reflect the unique GALS structure. In the unfolding 

process labeled events are assigned accordingly; all 

labeled events that belong to each local module LN are 

assigned to an occurrence net ONN and all labeled 

events that belong to each s ∈ S are assigned to ONS. 

The irdy and trdy control signals corresponding to the 

ports of the local occurrence nets are linked directly to 

CPs. Similarly, the irdy and trdy control signals of the 

synchronizer wrapper of Fig. 2 are linked to the 

corresponding CPs. This is depicted in Fig.5 in which 

two local modules LA and LB are mapped to ONA and 

ONB, respectively, and connected to ONS via CPs. 

Corresponding to Fig. 5 the prefix is prepartitioned 

into two segments ONL and ONS. All transitions with 

the highest priority are processed first. 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1720



 
Fig. 5. CSON diagram. 

As the unfolding proceeds the events are assigned to 

their partitions, respectively; the events eL of all local 

transitions of tA are assigned to ONL and the events of 

all communication transitions eS are assigned to ONS. 

Any s ∈ postset corresponding to syncIO are converted 

to CPs. Here syncIO refers to synchronizer inputs and 

outputs. For different clock domains the unfolding in 

each ONL is set at different rates according to the rate 

of queue firing. This is set in the unfolding algorithm 

by controlling the addition of the xMAS queue 

transitions which are clock sensitive at different rates 

according to the relative frequencies of the local 

partitions in which they reside. This also holds for the 

clock sensitive signals inside the synchronizers. 

B. Deadlock Analysis 

Deadlock checking is made at the communication 

level and modular level by analysis of the CSON 

model and localized occurrence nets. The concept of a 

local deadlock was introduced in terms of dead 

channels in which they define the concept of local 

deadlock based on sections of the model that become 

permanently inactive. These types of deadlock are split 

into two different types:  

1) blocking where trdy signals become permanently 

inactive and  

2) idle where irdy signals become permanently 

inactive.  

 

 

 

EXTENSION. 

DIGITAL CLOCK: 

Digital clock is a type of clock that displays the time 

digitally, i.e. in ciphers, as opposed to an analog clock, 

where the time is displayed by hands. Digital clocks 

are often associated with electronics drives, but the 

digital description refers only to the display, not to the 

drive mechanism (Both analog and digital clocks can 

be driven either mechanically or electronically, but 

clockwork mechanisms with digital displays are rare).  

Construction of digital clock Digital clocks typically 

use the 50 or 60 hertz oscillation of AC power or a 

32.768kHz crystal oscillator. A more commonly used 

hour sequence option is 12 hour format (with some 

indication of AM or PM). Emulations of analog-style 

faces often use an LCD screen, and these are also 

sometimes described as digital. 

 

VI. RESULTS 

The Verilog HDL Modules have successfully 

simulate, verified and synthesized using Xilinxise13.2. 

Simulation. 

 
RTL Schematic. 

 
 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1721



Technology summary 

 
 

Design Summary. 

 
Timing Summary. 

 
EXTENSION. 

Simulation. 

 
 

RTL Schematic. 

 
 

Technology summary 

 
Design Summary. 

Timing Summary. 

 
 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1722



VII. CONCLUSION 

In this paper, we have presented DLAU, which is a 

scalable and flexible deep learning accelerator based on 

FPGA. The DLAU includes three pipelined processing 

units, which can be reused for large scale neural 

networks. The proposed DLAU uses carry save adder 

in the computation process and as further process of the 

project to increase the computation speed parallel self 

timed adder is used in the design.  Experimental results 

on Xilinx FPGA prototype show that DLAU 

accelerator achieved more speed when compared to 

other devices like ASIC. 

 

VIII. REFERENCES 

 

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep 

learning,” Nature, vol. 521, no. 7553, pp. 436–444, 

2015.  

[2] J. Hauswald et al., “DjiNN and Tonic: DNN as a 

service and its impli-cations for future warehouse 

scale computers,” in Proc. ISCA, Portland, OR, 

USA, 2015, pp. 27–40.  

[3] C. Zhang et al., “Optimizing FPGA-based 

accelerator design for deep convolutional neural 

networks,” in Proc. FPGA, Monterey, CA, USA, 

2015, pp. 161–170.  

[4] P. Thibodeau. Data Centers are the New Polluters. 

Accessed on Apr. 4, 2016. [Online]. Available: 

http://www.computerworld.com/ 

article/2598562/data-center/data-centers-are-the-

new-polluters.html  

[5] D. L. Ly and P. Chow, “A high-performance FPGA 

architecture for restricted Boltzmann machines,” in 

Proc. FPGA, Monterey, CA, USA, 2009, pp. 73–

82.  

[6] T. Chen et al., “DianNao: A small-footprint high-

throughput accelerator for ubiquitous machine-

learning,” in Proc. ASPLOS, Salt Lake City, UT, 

USA, 2014, pp. 269–284.  

[7] S. K. Kim, L. C. McAfee, P. L. McMahon, and K. 

Olukotun, “A highly scalable restricted Boltzmann 

machine FPGA implementation,” in Proc. FPL, 

Prague, Czech Republic, 2009, pp. 367–372.  

[8] Q. Yu, C. Wang, X. Ma, X. Li, and X. Zhou, “A 

deep learning prediction process accelerator based 

FPGA,” in Proc. CCGRID, Shenzhen, China, 2015, 

pp. 1159–1162.  

[9] J. Qiu et al., “Going deeper with embedded FPGA 

platform for con-volutional neural network,” in 

Proc. FPGA, Monterey, CA, USA, 2016, pp. 26–35 

 

 

International Journal of Management, Technology And Engineering

Volume 8, Issue IX, SEPTEMBER/2018

ISSN NO : 2249-7455

Page No:1723


