# BIPOLAR VALUED MULTI FUZZY SUBFIELDS OF A FIELD <br> C. Yamini ${ }^{1}$, K. Arjunan $^{2}$, B. Ananth ${ }^{3}$ <br> ${ }^{l}$ Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624622,Tamilnadu, India. <br> ${ }^{2}$ Department of Mathematics, Alagappa Government Arts College, Karaikudi - 630 003, Tamilnadu,India. <br> ${ }^{3}$ Department of Mathematics, H.H.The Rajah's College, Pudukkottai - 622 001, Tamilnadu, India, 


#### Abstract

: In this paper, definition of bipolar valued multi fuzzy subfield and some Theorems of bipolar valued multi fuzzy subfield of a field are discussed.


Keywords: Bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, bipolar valued multi fuzzy subfield.

## 1. INTRODUCTION:

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc. Lee [6] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar-valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree $[0,1]$ indicates that elements somewhat satisfy the property and the membership degree $[-1,0]$ indicates that elements somewhat satisfy the implicit counter property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [6, 7]. Sabu Sebastian and T.V.Ramakrishnan [8, 9 ] defined the multi-fuzzy sets. Anitha.M.S., Muruganantha Prasad \& K.Arjunan[1] defined as Bipolar-valued fuzzy subgroups of a group. B.Yasodara and K.E.Sathappan [11, 12] defined the bipolar valued multi fuzzy subsemirings of a semiring, We introduce the concept of bipolar valued multi fuzzy subfield of a field and established some results.

## 2.PRELIMINARIES:

### 2.1 Definition:

A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $\mathrm{A}=\left\{<\mathrm{x}, \mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{x})\right.$ $>/ \mathrm{x} \in \mathrm{X}\}$, where $\mathrm{A}^{+}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}^{-}: \mathrm{X} \rightarrow[-1,0]$. The positive membership degree $\mathrm{A}^{+}(\mathrm{x})$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set A
and the negative membership degree $\mathrm{A}^{-}(\mathrm{x})$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

### 2.2 Example:

$\mathrm{A}=\{<\mathrm{a}, 0.9,-0.6\rangle,\langle\mathrm{b}, 0.8,-0.7\rangle,\langle\mathrm{c}, 0.7,-0.5\rangle\}$ is a bipolar valued fuzzy subset of $\mathrm{X}=\{\mathrm{a}, \mathrm{b}$, c $\}$.

### 2.3 Definition:

A bipolar valued multi fuzzy set (BVMFS) A in $X$ of order $n$ is defined as an object of the form $A=\{$ $\left.<x, A_{i}^{+}(x), A_{i}^{-}(x)>/ x \in X\right\}$, where $A_{i}^{+}: X \rightarrow[0,1]$ and $A_{i}^{-}: X \rightarrow[-1,0], i=1,2,3, \ldots n$. The positive membership degrees $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ denote the satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set $A$ and the negative membership degrees $A_{i}^{-}(x)$ denote the satisfaction degree of an element $x$ to some implicit counter-property corresponding to a bipolar-valued multi fuzzy set A.

### 2.4 Example:

$\mathrm{A}=\{<\mathrm{a}, 0.5,0,6,0.3,-0.3,-0.6,-0.5>,<\mathrm{b}, 0.1,0.4,0.7,-0.7,-0.3,-0.6>,<\mathrm{c}, 0.5,0.3,0.8$, $-0.4,-0.5,-0.3>\}$ is a bipolar-valued multi fuzzy subset of order 3 in $X=\{a, b, c\}$.

### 2.5 Definition:

Let A and B be two bipolar valued multi fuzzy subsets of a set X . We define the following relations and operations:
(i) $A \subset B$ if and only if $A_{i}^{+}(x) \leq B_{i}^{+}(x)$ and $A_{i}^{-}(x) \geq B_{i}^{-}(x)$ for all $i$ and for all $x \in X$.
(ii) $\mathrm{A}=\mathrm{B}$ if and only if $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})$ and $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for all $\mathrm{x} \in \mathrm{X}$.
(iii) $\mathrm{A} \cap \mathrm{B}=\left\{\left\langle\mathrm{x}, \min \left(\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right), \max \left(\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right)\right\rangle / \mathrm{x} \in \mathrm{X}\right.$ and for all i$\}$.
(iv) $\mathrm{A} \cup \mathrm{B}=\left\{\left\langle\mathrm{x}, \max \left(\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right), \min \left(\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right)\right\rangle / \mathrm{x} \in \mathrm{X}\right.$ and for all i$\}$.
2.6 Definition:

Let F be a field. A bipolar valued multi fuzzy subset A of F is said to be a bipolar valued multi fuzzy subfield of $F$ if the following conditions are satisfied,
(i) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all $\mathrm{x}, \mathrm{y}$ in F
(ii) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all $\mathrm{x}, \mathrm{y}$ in F
(iii) $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all $\mathrm{x}, \mathrm{y} \neq 0$ in F
(iv) $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all $\mathrm{x}, \mathrm{y} \neq 0$ in F .

### 2.7 Example:

Let $\mathrm{F}=\mathrm{Z}_{3}=\{0,1,2\}$ be a field with respect to the ordinary addition and multiplication. Then $\mathrm{A}=\{$ $<0,0.5,0.8,0.6,-0.6,-0.5,-0.7>,<1,0.4,0.7,0.5,-0.5,-0.4,-0.6>,<2,0.4,0.7,0.5,-0.5$, $-0.4,-0.6>\}$ is a bipolar valued multi fuzzy subfield of order 3 in $F$.

Note: In this paper, $\mathrm{A}=\left\langle\mathrm{A}_{\mathrm{i}}{ }^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$is a bipolar valued multi fuzzy subfield of order (dimension ) n .

## 3. PROPERTIES:

### 3.1 Theorem:

Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar valued multi fuzzy subfield of a field $F$. Then $A_{i}^{+}(-x)=A_{i}^{+}(x), A_{i}^{-}$ $(-x)=A_{i}^{-}(x), A_{i}^{+}(x) \leq A_{i}^{+}(0), A_{i}^{-}(x) \geq A_{i}^{-}(0)$, for all $i$ and for all $x$ in $F$ and $A_{i}^{+}\left(x^{-1}\right)=A_{i}^{+}(x)$ and $A_{i}^{-}\left(x^{-1}\right)=A_{i}^{-}(x), A_{i}^{+}(x) \leq A_{i}^{+}(1)$ and $A_{i}^{-}(x) \geq A_{i}^{-}(1)$, for all i and for all $x \neq 0$ in $F$, where 0 and 1 are identity elements in F .
Proof:
Let $x$ be in $F$. Now, $A_{i}^{+}(x)=A_{i}^{+}(-(-x)) \geq A_{i}^{+}(-x) \geq A_{i}^{+}(x)$ for all i and for all $x$ in $F$. And $A_{i}^{-}(x)=$ $A_{i}^{-}(-(-x)) \leq A_{i}^{-}(-x) \leq A_{i}^{-}(x)$ for all $i$ and for all $x$ in $F$. And, $A_{i}^{+}(0)=A_{i}^{+}(x-x) \geq \min \left\{A_{i}^{+}(x)\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for all x in F . And $\mathrm{A}_{\mathrm{i}}^{-}(0)=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{x}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all $i$ and for all $x$ in $F$. Let $x \neq 0$ be in $F$. Now $A_{i}^{+}(x)=A_{i}^{+}\left(\left(x^{-1}\right)^{-1}\right) \geq A_{i}^{+}\left(x^{-1}\right) \geq A_{i}^{+}(x)$ for all i and for all $x \neq 0$ in $F$. And $A_{i}^{-}(x)=A_{i}^{-}\left(\left(x^{-1}\right)^{-1}\right) \leq A_{i}^{-}\left(x^{-1}\right) \leq A_{i}^{-}(x)$ for all $i$ and for all $x \neq 0$ in $F$. And $A_{i}^{+}(e)=A_{i}^{+}\left(x x^{-1}\right) \geq \min \left\{A_{i}^{+}(x), A_{i}^{+}\left(x^{-1}\right)\right\}=A_{i}^{+}(x)$ for all i and for all $x \neq 0$ in $F$. And $A_{i}^{-}(e)=A_{i}^{-}\left(x x^{-}\right.$ $\left.{ }^{1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right)\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for all $\mathrm{x} \neq 0$ in F .
3.2 Theorem:

Let $A=\left\langle\mathrm{A}_{\mathrm{i}}^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$be a bipolar valued multi fuzzy subfield of a field F . Then
(i) $A_{i}^{+}(x-y)=A_{i}^{+}(0)$ implies that $A_{i}^{+}(x)=A_{i}^{+}(y)$ for all i and for $x, y$ in $F$.
(ii) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(0)$ implies that $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})$ for all i and for $\mathrm{x}, \mathrm{y}$ in F .
(iii) $A_{i}^{+}\left(x y^{-1}\right)=A_{i}^{+}(1)$ implies that $A_{i}^{+}(x)=A_{i}^{+}(y)$ for all i and for $x \neq 0, y \neq 0$ in $F$.
(iv) $A_{i}^{-}\left(x y^{-1}\right)=A_{i}^{-}(1)$ implies that $A_{i}^{-}(x)=A_{i}^{-}(y)$ for all $i$ and for $x \neq 0, y \neq 0$ in $F$.

Proof:
(i) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}+\mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(0), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}-\mathrm{x}+\mathrm{x})$ $\geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}-\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(0), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for x , y in F . (ii) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}$ $(\mathrm{x}-\mathrm{y}+\mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(0), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y}-\mathrm{x}+\mathrm{x}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y}-\mathrm{x})\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(0), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for $\mathrm{x}, \mathrm{y}$ in F . (iii) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \geq \min \{$ $\left.\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(1), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{yx}^{-1} \mathrm{x}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{yx}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\min \{$ $\left.\mathrm{A}_{\mathrm{i}}^{+}(1), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F . (iv) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(1), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{yx}^{-1} \mathrm{x}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{yx}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(1), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right.$ $\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F .

### 3.3 Theorem:

Let $A=\left\langle\mathrm{A}_{i}^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$be a bipolar valued multi fuzzy subfield of a field F .
(i) If $A_{i}^{+}(x-y)=1$, then $A_{i}^{+}(x)=A_{i}^{+}(y)$ for all i and for $x, y$ in $F$.
(ii) If $A_{i}^{-}(x-y)=-1$, then $A_{i}^{-}(x)=A_{i}^{-}(y)$ for all i and for $x, y$ in $F$.
(iii) If $A_{i}^{+}\left(x y^{-1}\right)=1$, then $A_{i}^{+}(x)=A_{i}^{+}(y)$ for all i and for $x \neq 0, y \neq 0$ in $F$.
(iv) If $A_{i}^{-}\left(x y^{-1}\right)=-1$, then $A_{i}^{-}(x)=A_{i}^{-}(y)$ for all i and for $x \neq 0, y \neq 0$ in $F$.

Proof:
(i) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}+\mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{1, \mathrm{~A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{x}+\mathrm{x}-\mathrm{y})$ $\geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{x}), 1\right\}=\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for $\mathrm{x}, \mathrm{y}$ in F . (ii) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}+\mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{-1, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{x}+\mathrm{x}-\mathrm{y}) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{x}),-1\right\}=\mathrm{A}_{\mathrm{i}}^{-}(-\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for $\mathrm{x}, \mathrm{y}$ in F . (iii) $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ $=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{1, \mathrm{~A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{y}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1} \mathrm{xy}^{-1}\right) \geq \min \{$ $\left.\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1}\right), 1\right\}=\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{x}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F . (iv) $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1} \mathrm{y}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{-1, \mathrm{~A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{y}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1} \mathrm{xy}^{-1}\right) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right), \mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right),-1\right\}=\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{x}^{-1}\right)=\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F .
3.4 Theorem:

Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar valued multi fuzzy subfield of a field $F$.
(i) If $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y})=0$, then either $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0$ for all i and for $\mathrm{x}, \mathrm{y}$ in F .
(ii) If $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y})=0$, then either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$ for all i and for $\mathrm{x}, \mathrm{y}$ in F .
(iii) If $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)=0$, then either $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F .
(iv) If $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)=0$, then either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$ for all i and for $\mathrm{x} \neq 0, \mathrm{y} \neq 0$ in F .

Proof:
(i) Let $x$ and $y$ in $F$. By the definition $A_{i}^{+}(x-y) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ which implies that $0 \geq$ min $\left\{\mathrm{A}_{i}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Thus either $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0$ for all i. (ii) By the definition $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}) \leq$ $\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ which implies that $0 \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Thus either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$ for all i. (iii) Let $x \neq 0$ and $y \neq 0$ in $F$. By the definition $A_{i}^{+}\left(x^{-1}\right) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ which implies that $0 \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$. Thus either $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})=0$ for all i. (iv) By the definition $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ which implies that $0 \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$. Thus either $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})=0$ or $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})=0$ for all i .
3.5 Theorem:

Let $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$be a bipolar valued multi fuzzy subfield of a field $F$. Then
(i) $A_{i}^{+}(x+y)=A_{i}^{+}(y+x)$ if and only if $A_{i}^{+}(x)=A_{i}^{+}(-y+x+y)$ for all i and for $x, y$ in $F$.
(ii) $A_{i}^{-}(x+y)=A_{i}^{-}(y+x)$ if and only if $A_{i}^{-}(x)=A_{i}^{-}(-y+x+y)$ for all i and for $x, y$ in $F$.
(iii) $A_{i}^{+}(x y)=A_{i}^{+}(y x)$ if and only if $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$ for all $i$ and for $x \neq 0, y \neq 0$ in $F$.
(iv) $A_{i}^{-}(x y)=A_{i}^{-}(y x)$ if and only if $A_{i}^{-}(x)=A_{i}^{-}\left(y^{-1} x y\right)$ for all i and for $x \neq 0, y \neq 0$ in $F$.

Proof:
(i) Let $x, y$ be in F. Assume that $A_{i}^{+}(x+y)=A_{i}^{+}(y+x)$, so, $A_{i}^{+}(-y+x+y)=A_{i}^{+}(-y+y+x)=A_{i}^{+}(0+x)=$ $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})$ for all i and for $\mathrm{x}, \mathrm{y}$ in F . Conversely, assume that $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x})=\mathrm{A}_{\mathrm{i}}^{+}(-\mathrm{y}+\mathrm{x}+\mathrm{y})$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}+\mathrm{y})=$ $A_{i}^{+}(x+y+x-x)=A_{i}^{+}(y+x)$ for all $i$ and for $x$, $y$ in $F$. (ii) Assume $A_{i}^{-}(x+y)=A_{i}^{-}(y+x)$, then $A_{i}^{-}(-y+x+y)=A_{i}^{-}(-y+y+x)=A_{i}^{-}(0+x)=A_{i}^{-}(x)$ for all $i$ and for $x, y$ in $F$. Conversely, assume that $A_{i}^{-}(x)=A_{i}^{-}(-y+x+y)$, so, $A_{i}^{-}(x+y)=A_{i}^{-}(x+y+x-x)=A_{i}^{-}(y+x)$ for all $i$ and for $x, y$ in $F$. (iii) Let $x \neq$
$0, y \neq 0$ be in $F$. Assume that $A_{i}^{+}(x y)=A_{i}^{+}(y x)$, so, $A_{i}^{+}\left(y^{-1} x y\right)=A_{i}^{+}\left(y^{-1} y x\right)=A_{i}^{+}(1 x)=A_{i}^{+}(x)$ for all i and for $x \neq 0, y \neq 0$ in $F$. Conversely, assume that $A_{i}^{+}(x)=A_{i}^{+}\left(y^{-1} x y\right)$, then $A_{i}^{+}(x y)=A_{i}^{+}\left(x y x x^{-1}\right)=$ $A_{i}^{+}(y x)$ for all $i$ and for $x \neq 0, y \neq 0$ in $F$. (iv) Assume $A_{i}^{-}(x y)=A_{i}^{-}(y x)$, then $A_{i}^{-}\left(y^{-1} x y\right)=A_{i}^{-}\left(y^{-1} y x\right)=$ $A_{i}^{-}(1 x)=A_{i}^{-}(x)$ for all $i$ and for $x \neq 0, y \neq 0$ in $F$. Conversely, assume that $A_{i}^{-}(x)=A_{i}^{-}\left(y^{-1} x y\right)$ so $A_{i}^{-}(x y)=A_{i}^{-}\left(x y x x^{-1}\right)=A_{i}^{-}(y x)$ for all $i$ and for $x \neq 0, y \neq 0$ in $F$.
3.6 Theorem:

If $A=\left\langle\mathrm{A}_{\mathrm{i}}^{+}, \mathrm{A}_{\mathrm{i}}^{-}\right\rangle$is a bipolar valued multi fuzzy subfield of a field F , then
$H=\left\{x \in F \mid A_{i}^{+}(x)=1, A_{i}^{-}(x)=-1\right.$ for all $\left.i\right\}$ is either empty or is a subfield of $F$.
Proof:
If no element satisfies this condition, then $H$ is empty. If $x$ and $y$ in $H$, then $A_{i}^{+}(x-y) \geq \min \left\{A_{i}^{+}(x)\right.$, $\left.\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \{1,1\}=1$. Therefore $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y})=1$ for all i. And $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max$ $\{-1,-1\}=-1$. Therefore $A_{i}^{-}(x-y)=-1$ for all i. That is $x-y \in H$. If $x$ and $y \neq 0$ in $H$, then $A_{i}^{+}\left(x y^{-1}\right) \geq$ $\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \{1,1\}=1$. Thus $\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)=1$ for all i. And $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right.$ $\}=\max \{-1,-1\}=-1$. Therefore $A_{i}^{-}\left(x y^{-1}\right)=-1$ for all i. That is $x y^{-1} \in H$. Hence $H$ is a subfield of $F$. Hence $H$ is either empty or is a subfield of $F$.
3.7 Theorem:

If $A=\left\langle A_{i}^{+}, A_{i}^{-}\right\rangle$is a bipolar valued multi fuzzy subfield of a field $F$, then $H=\left\{x \in F \mid A_{i}^{+}(x)=A_{i}^{+}(0)\right.$ $=A_{i}^{+}(1)$ and $A_{i}^{-}(x)=A_{i}^{-}(0)=A_{i}^{-}(1)$ for all $\left.i\right\}$ is a subfield of $F$, where 0 and 1 are identity elements.
Proof:
By Theorem 2.1, $A_{i}^{+}(-x)=A_{i}^{+}(x)=A_{i}^{+}(0)$ and $A_{i}^{-}(-x)=A_{i}^{-}(x)=A_{i}^{-}(0)$ for all i. Thus $-x \in H$. If $x$, $\mathrm{y} \in \mathrm{H}$, then $\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y}) \geq \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(0), \mathrm{A}_{\mathrm{i}}^{+}(0)\right\}=\mathrm{A}_{\mathrm{i}}^{+}(0)$ and $\mathrm{A}_{\mathrm{i}}^{+}(0) \geq \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y})$. Thus $\mathrm{A}_{\mathrm{i}}^{+}(0)=\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}-\mathrm{y})$ for all i. Also $\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(0), \mathrm{A}_{\mathrm{i}}^{-}(0)\right\}=$ $A_{i}^{-}(0)$ and $A_{i}^{-}(0) \leq A_{i}^{-}(x-y)$. Thus $A_{i}^{-}(0)=A_{i}^{-}(x-y)$ for all i. Therefore $x-y \in H$. By Theorem 2.1, $A_{i}^{+}\left(x^{-1}\right)=A_{i}^{+}(x)=A_{i}^{+}(1)$ and $A_{i}^{-}\left(x^{-1}\right)=A_{i}^{-}(x)=A_{i}^{-}(1)$ for all i. Thus $x^{-1} \in H$. If $x, y \neq 0 \in H$, then $\mathrm{A}_{i}^{+}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mathrm{A}_{i}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(1), \mathrm{A}_{\mathrm{i}}^{+}(1)\right\}=\mathrm{A}_{\mathrm{i}}^{+}(1)$ and $\mathrm{A}_{\mathrm{i}}^{+}(1) \geq \mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)$. Thus $\mathrm{A}_{\mathrm{i}}^{+}(1)=$ $\mathrm{A}_{i}^{+}\left(\mathrm{xy}^{-1}\right)$ for all i. Also $\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right) \leq \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(1), \mathrm{A}_{\mathrm{i}}^{-}(1)\right\}=\mathrm{A}_{\mathrm{i}}^{-}(1)$ and $\mathrm{A}_{\mathrm{i}}^{-}(1) \leq$ $A_{i}^{-}\left(x y^{-1}\right)$. Thus $A_{i}^{-}(1)=A_{i}^{-}\left(x y^{-1}\right)$ for all i. Therefore $x y^{-1} \in H$. Hence $H$ is a subfield of $H$.
3.8 Theorem:

If $A=\left\langle\mathrm{A}_{\mathbf{i}}^{+}, \mathrm{A}_{\mathbf{i}}^{-}\right\rangle$and $\mathrm{B}=\left\langle\mathrm{B}_{\mathrm{i}}^{+}, \mathrm{B}_{\mathrm{i}}^{-}\right\rangle$are two bipolar valued multi fuzzy subfields of a field F , then their intersection $\mathrm{A} \cap \mathrm{B}$ is a bipolar valued multi fuzzy subfield of G .

Proof:
Let $\mathrm{A}=\left\{<\mathrm{x}, \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})>/ \mathrm{x} \in \mathrm{F}\right\}, \mathrm{B}=\left\{<\mathrm{x}, \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})>/ \mathrm{x} \in \mathrm{F}\right\}$ for all i. Let $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$ and $C=\left\{<x, C_{i}^{+}(x), C_{i}^{-}(x)>/ x \in F\right\}$. Then $C_{i}^{+}(x-y)=\min \left\{A_{i}^{+}(x-y), B_{i}^{+}(x-y)\right\} \geq \min \left\{\min \left\{A_{i}^{+}(x)\right.\right.$, $\left.\left.\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}, \min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\} \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\}=\min \left\{\mathrm{C}_{\mathrm{i}}^{+}(\mathrm{x})\right.$,
$\left.\mathrm{C}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all i. Also $\mathrm{C}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y})=\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}-\mathrm{y})\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}, \max \right.$ $\left.\left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right\}, \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\}=\max \left\{\mathrm{C}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all i. And $\mathrm{C}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)=\min \left\{\mathrm{A}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right), \mathrm{B}_{\mathrm{i}}^{+}\left(\mathrm{xy}^{-1}\right)\right\} \geq \min \left\{\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y})\right\}, \min \left\{\mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\} \geq \min \{$ $\left.\min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{x})\right\}, \min \left\{\mathrm{A}_{\mathrm{i}}^{+}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{+}(\mathrm{y})\right\}\right\}=\min \left\{\mathrm{C}_{\mathrm{i}}^{+}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{+}(\mathrm{y})\right\}$ for all i. Also $\mathrm{C}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)=\max$ $\left\{\mathrm{A}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right), \mathrm{B}_{\mathrm{i}}^{-}\left(\mathrm{xy}^{-1}\right)\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y})\right\}, \max \left\{\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\} \leq \max \left\{\max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{x})\right.\right.$, $\left.\left.\mathrm{B}_{\mathrm{i}}^{-}(\mathrm{x})\right\}, \max \left\{\mathrm{A}_{\mathrm{i}}^{-}(\mathrm{y}), \mathrm{B}_{\mathrm{i}}^{-}(\mathrm{y})\right\}\right\}=\max \left\{\mathrm{C}_{\mathrm{i}}^{-}(\mathrm{x}), \mathrm{C}_{\mathrm{i}}^{-}(\mathrm{y})\right\}$ for all i. Hence $\mathrm{A} \cap \mathrm{B}$ is a bipolar valued multi fuzzy subfield of $F$.
3.9 Theorem:

The intersection of a family of bipolar valued multi fuzzy subfields of a field F is a bipolar valued multi fuzzy subfield of $F$.

Proof:
The proof follows from Theorems 2.8.

## REFERENCES:

1. Anitha.M.S., Muruganantha Prasad \& K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
2. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, Journal of mathematical analysis and applications, 69(1979), 124-130.
3. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411.
4. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
5. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3) (2009), 361-373.
6. K.M.Lee, Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
7. K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. $J$. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129.
8. Sabu Sebastian and T.V.Ramakrishnan, Multi-fuzzy sets, International Mathematical Forum, 6, 2010, no.50, 2471-2476.
9. Sabu Sebastian and T.V.Ramakrishnan, Multi-fuzzy subgroups, Int.J.Contemp.Math.Sciences, Vol. 6, 2011, no.8, 365 - 372.
10. Samit Kumar Majumder, Bipolar Valued fuzzy Sets in Г-Semigroups, Mathematica Aeterna, Vol. 2, no. 3(2012), 203 - 213.
11. B.Yasodara and K.E.Sathappan, Bipolar-valued multi fuzzy subsemirings of a semiring, International Journal of Mathematical Archive, 6(9), 2015, 75-80.
12. B.Yasodara and K.E.Sathappan, Homomorphism and anti-homomorphism of bipolar-valued multi fuzzy subsemirings of a semiring, Bulletin of Mathematics and Statistics Research, Vol. 3 Issu.3, 2015, 229 - 233.
13. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.
