BIPOLAR VALUED MULTI FUZZY SUBFIELDS OF A FIELD

C. Yamini¹, K. Arjunan², B. Ananth³

¹Department of Mathematics, PSNA College of Engineering and Technology,
Dindigul-624622, Tamilnadu, India.

²Department of Mathematics, Alagappa Government Arts College,

Karaikudi – 630 003, Tamilnadu,India.

³Department of Mathematics, H.H.The Rajah's College, Pudukkottai – 622 001, Tamilnadu, India,

ABSTRACT:

In this paper, definition of bipolar valued multi fuzzy subfield and some Theorems of bipolar valued multi fuzzy subfield of a field are discussed.

Keywords: Bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, bipolar valued multi fuzzy subfield.

1. INTRODUCTION:

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc. Lee [6] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar-valued fuzzy set, the membership degree [0, 1] indicates that elements are irrelevant to the corresponding property, the membership degree [0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0] indicates that elements somewhat satisfy the implicit counter property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [6, 7]. Sabu Sebastian and T.V.Ramakrishnan [8, 9] defined the multi-fuzzy sets. Anitha.M.S., Muruganantha Prasad & K.Arjunan[1] defined as Bipolar-valued fuzzy subgroups of a group. B.Yasodara and K.E.Sathappan [11, 12] defined the bipolar valued multi fuzzy subsemirings of a semiring, We introduce the concept of bipolar valued multi fuzzy subfield of a field and established some results.

2.PRELIMINARIES:

2.1 Definition:

A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $A = \{ < x, A^+(x), A^-(x) > / x \in X \}$, where $A^+: X \to [0, 1]$ and $A^-: X \to [-1, 0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set A

and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

2.2 Example:

A = $\{ < a, 0.9, -0.6 >, < b, 0.8, -0.7 >, < c, 0.7, -0.5 > \}$ is a bipolar valued fuzzy subset of X = $\{ a, b, c \}$.

2.3 Definition:

A bipolar valued multi fuzzy set (BVMFS) A in X of order n is defined as an object of the form $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle / x \in X \}$, where $A_i^+: X \to [0, 1]$ and $A_i^-: X \to [-1, 0]$, i = 1, 2, 3, ... n. The positive membership degrees $A_i^+(x)$ denote the satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set A and the negative membership degrees $A_i^-(x)$ denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued multi fuzzy set A.

2.4 Example:

A = {
$$<$$
 a, 0.5, 0,6, 0.3, -0.3 , -0.6 , -0.5 $>$, $<$ b, 0.1, 0.4, 0.7, -0.7 , -0.3 , -0.6 $>$, $<$ c, 0.5, 0.3, 0.8, -0.4 , -0.5 , -0.3 $>$ } is a bipolar-valued multi fuzzy subset of order 3 in X = { a, b, c }.

2.5 Definition:

Let A and B be two bipolar valued multi fuzzy subsets of a set X. We define the following relations and operations:

- (i) $A \subset B$ if and only if $A_i^+(x) \le B_i^+(x)$ and $A_i^-(x) \ge B_i^-(x)$ for all i and for all $x \in X$.
- (ii) A = B if and only if $A_i^+(x) = B_i^+(x)$ and $A_i^-(x) = B_i^-(x)$ for all i and for all $x \in X$.
- (iii) $A \cap B = \{ \langle x, \min(A_i^+(x), B_i^+(x)), \max(A_i^-(x), B_i^-(x)) \rangle / x \in X \text{ and for all } i \}.$
- (iv) $A \cup B = \{ \langle x, \max(A_i^+(x), B_i^+(x)), \min(A_i^-(x), B_i^-(x)) \rangle / x \in X \text{ and for all } i \}.$

2.6 Definition:

Let F be a field. A bipolar valued multi fuzzy subset A of F is said to be a bipolar valued multi fuzzy subfield of F if the following conditions are satisfied,

- (i) $A_i^+(x-y) \ge \min\{A_i^+(x), A_i^+(y)\}\$ for all x, y in F
- (ii) $A_i^-(x-y) \le \max\{A_i^-(x), A_i^-(y)\}\$ for all x, y in F
- (iii) $A_i^+(xy^{-1}) \ge \min\{A_i^+(x), A_i^+(y)\}\$ for all $x, y \ne 0$ in F
- (iv) $A_i^-(xy^{-1}) \le \max\{A_i^-(x), A_i^-(y)\}\$ for all $x, y \ne 0$ in F.

2.7 Example:

Let $F = Z_3 = \{0, 1, 2\}$ be a field with respect to the ordinary addition and multiplication. Then $A = \{0, 0.5, 0.8, 0.6, -0.6, -0.5, -0.7 >, <1, 0.4, 0.7, 0.5, -0.5, -0.4, -0.6 >, <2, 0.4, 0.7, 0.5, -0.5, -0.4, -0.6 > \}$ is a bipolar valued multi fuzzy subfield of order 3 in F.

Note: In this paper, $A = \langle A_i^+, A_i^- \rangle$ is a bipolar valued multi fuzzy subfield of order (dimension) n.

3. PROPERTIES:

3.1 Theorem:

Let $A = \langle A_i^+, A_i^- \rangle$ be a bipolar valued multi fuzzy subfield of a field F. Then $A_i^+(-x) = A_i^+(x)$, $A_i^-(-x) = A_i^-(x)$, $A_i^+(x) \leq A_i^+(0)$, $A_i^-(x) \geq A_i^-(0)$, for all i and for all x in F and $A_i^+(x^{-1}) = A_i^+(x)$ and $A_i^-(x^{-1}) = A_i^-(x)$, $A_i^+(x) \leq A_i^+(1)$ and $A_i^-(x) \geq A_i^-(1)$, for all i and for all $x \neq 0$ in F, where 0 and 1 are identity elements in F.

Proof:

Let x be in F. Now, $A_i^+(x) = A_i^+(-(-x)) \ge A_i^+(-x) \ge A_i^+(x)$ for all i and for all x in F. And $A_i^-(x) = A_i^-(-(-x)) \le A_i^-(-x) \le A_i^-(x)$ for all i and for all x in F. And, $A_i^+(0) = A_i^+(x-x) \ge \min \{A_i^+(x), A_i^+(-x)\} = A_i^+(x)$ for all i and for all x in F. And $A_i^-(0) = A_i^-(x-x) \le \max \{A_i^-(x), A_i^-(-x)\} = A_i^-(x)$ for all i and for all x in F. Let $x \ne 0$ be in F. Now $A_i^+(x) = A_i^+((x^{-1})^{-1}) \ge A_i^+(x^{-1}) \ge A_i^+(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-((x^{-1})^{-1}) \le A_i^-(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-(x)$ for all i and for all $x \ne 0$ in F. And $A_i^-(x) = A_i^-(x)$ for all i and for all $x \ne 0$ in F.

3.2 Theorem:

Let $A = \langle A_i^+, A_i^- \rangle$ be a bipolar valued multi fuzzy subfield of a field F. Then

- (i) $A_i^+(x-y) = A_i^+(0)$ implies that $A_i^+(x) = A_i^+(y)$ for all i and for x, y in F.
- (ii) $A_i^-(x-y) = A_i^-(0)$ implies that $A_i^-(x) = A_i^-(y)$ for all i and for x, y in F.
- (iii) $A_i^+(xy^{-1}) = A_i^+(1)$ implies that $A_i^+(x) = A_i^+(y)$ for all i and for $x \ne 0$, $y \ne 0$ in F.
- (iv) $A_i^-(xy^{-1}) = A_i^-(1)$ implies that $A_i^-(x) = A_i^-(y)$ for all i and for $x \neq 0$, $y \neq 0$ in F.

Proof:

 $\begin{array}{l} \text{(i) } A_{i}^{+}(x) = A_{i}^{+}(\ x-y+y\) \geq \min \ \{\ A_{i}^{+}(x-y),\ A_{i}^{+}(y)\ \} = \min \ \{\ A_{i}^{+}(0),\ A_{i}^{+}(y)\ \} = A_{i}^{+}(y) = A_{i}^{+}(y) = A_{i}^{+}(y-x+x) \\ \geq \min \{\ A_{i}^{+}(y-x),\ A_{i}^{+}(x)\ \} = \min \{\ A_{i}^{+}(0),\ A_{i}^{+}(x)\ \} = A_{i}^{+}(x)\ \text{for all i and for } x,y \text{ in } F.\ \text{(ii) } A_{i}^{-}(x) = A_{i}^{-}(x-y+y) \\ \leq \max \{\ A_{i}^{-}(x-y),\ A_{i}^{-}(y)\ \} = \max \{A_{i}^{-}(0),\ A_{i}^{-}(y)\ \} = A_{i}^{-}(y) = A_{i}^{-}(y-x+x) \\ \leq \max \{\ A_{i}^{-}(y-x+x) \leq \max \{\ A_{i}^{-}(y-x),\ A_{i}^{-}(x)\ \} = \max \{\ A_{i}^{-}(0),\ A_{i}^{-}(x)\ \} = A_{i}^{-}(x)\ \text{for all i and for } x,y \text{ in } F.\ \text{(iii) } A_{i}^{+}(x) = A_{i}^{+}(\ xy^{-1}y) \geq \min \{\ A_{i}^{+}(\ xy^{-1}y)\ \} = \min \{\ A_{i}^{+}(\ xy^{-1}),\ A_{i}^{+}(x)\ \} = \min \{\ A_{i}^{+}(\ xy^{-1}),\ A_{i}^{+}(x)\ \} = \min \{\ A_{i}^{+}(\ xy^{-1}),\ A_{i}^{+}(x)\ \} = \min \{\ A_{i}^{-}(\ xy^{-1}),\ A_{i}^{-}(x)\ \} = \max \{\ A_{i}^{-}(\ xy^{-1}),\ A_{i}^{-}(x)\ \} = \min \{\ A_{i}^{-}(\ xy^{-1}),\ A_{i}^{-}(x)\ \} = \min \{\ A_{i}^{-}(\ xy^{-1}),\ A_{i}^{-}(\ xy^{-1}),$

3.3 Theorem:

Let $A = \langle A_i^+, A_i^- \rangle$ be a bipolar valued multi fuzzy subfield of a field F.

- (i) If $A_i^+(x-y) = 1$, then $A_i^+(x) = A_i^+(y)$ for all i and for x, y in F.
- (ii) If $A_i^-(x-y) = -1$, then $A_i^-(x) = A_i^-(y)$ for all i and for x, y in F.
- (iii) If $A_i^+(xy^{-1}) = 1$, then $A_i^+(x) = A_i^+(y)$ for all i and for $x \ne 0$, $y \ne 0$ in F.
- (iv) If $A_i^-(xy^{-1}) = -1$, then $A_i^-(x) = A_i^-(y)$ for all i and for $x \ne 0$, $y \ne 0$ in F.

Proof:

(i) $A_i^+(x) = A_i^+(x-y+y) \ge \min\{A_i^+(x-y), A_i^+(y)\} = \min\{1, A_i^+(y)\} = A_i^+(y) = A_i^+(-y) = A_i^+(-x+x-y)$ $\geq \min \{A_i^+(-x), A_i^+(x-y)\} = \min \{A_i^+(-x), 1\} = A_i^+(-x) = A_i^+(x)$ for all i and for x, y in F. (ii) $\max\{A_i^-(-x), A_i^-(x-y)\} = \max\{A_i^-(-x), -1\} = A_i^-(-x) = A_i^-(x)$ for all i and for x, y in F. (iii) $A_i^+(x)$ $= A_i^+(xy^{-1}y) \ge \min\{A_i^+(xy^{-1}), A_i^+(y)\} = \min\{1, A_i^+(y)\} = A_i^+(y) = A_i^+(y^{-1}) = A_i^+(x^{-1}xy^{-1}) \ge \min\{1, A_i^+(y)\} = A_i^+(y) = A_i^+(y$ $A_i^+(x^{-1}), A_i^+(xy^{-1}) \} = \min\{A_i^+(x^{-1}), 1\} = A_i^+(x^{-1}) = A_i^+(x) \text{ for all } i \text{ and for } x \neq 0, y \neq 0 \text{ in } F. \text{ (iv)}$ $A_i^-(x) = A_i^-(xy^{-1}y) \le \max \{A_i^-(xy^{-1}), A_i^-(y)\} = \max\{-1, A_i^-(y)\} = A_i^-(y) = A_i^-(y^{-1}) = A_i^-(x^{-1}xy^{-1}) \le \max\{-1, A_i^-(y)\} = A_i^-(y) = A_i^-($ $\max\{A_i(x^{-1}), A_i(xy^{-1})\} = \max\{A_i(x^{-1}), -1\} = A_i(x^{-1}) = A_i(x)$ for all i and for $x \neq 0, y \neq 0$ in F.

3.4 Theorem:

Let $A = \langle A_i^+, A_i^- \rangle$ be a bipolar valued multi fuzzy subfield of a field F.

- (i) If $A_i^+(x-y) = 0$, then either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ for all i and for x, y in F.
- (ii) If $A_i^-(x-y) = 0$, then either $A_i^-(x) = 0$ or $A_i^-(y) = 0$ for all i and for x, y in F.
- (iii) If $A_i^+(xy^{-1}) = 0$, then either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ for all i and for $x \neq 0$, $y \neq 0$ in F.
- (iv) If $A_i^-(xy^{-1}) = 0$, then either $A_i^-(x) = 0$ or $A_i^-(y) = 0$ for all i and for $x \neq 0$, $y \neq 0$ in F. Proof:
- (i) Let x and y in F. By the definition $A_i^+(x-y) \ge \min\{A_i^+(x), A_i^+(y)\}$ which implies that $0 \ge \min\{A_i^+(x), A_i^+(y)\}$ $\{A_i^+(x), A_i^+(y)\}$. Thus either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ for all i. (ii) By the definition $A_i^-(x-y) \le 0$ $\max\{A_i^-(x), A_i^-(y)\}\$ which implies that $0 \le \max\{A_i^-(x), A_i^-(y)\}\$. Thus either $A_i^-(x) = 0$ or $A_i^-(y) = 0$ for all i. (iii) Let $x \neq 0$ and $y \neq 0$ in F. By the definition $A_i^+(xy^{-1}) \geq \min \{ A_i^+(x), A_i^+(y) \}$ which implies that $0 \ge \min \{ A_i^+(x), A_i^+(y) \}$. Thus either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ for all i. (iv) By the definition $A_i^-(xy^{-1}) \le \max \{A_i^-(x), A_i^-(y)\}$ which implies that $0 \le \max \{A_i^-(x), A_i^-(y)\}$. Thus either $A_i^-(x) = 0$ or $A_i^-(y) = 0$ for all i.

3.5 Theorem:

Let $A = \langle A_i^+, A_i^- \rangle$ be a bipolar valued multi fuzzy subfield of a field F. Then

- (i) $A_i^+(x+y) = A_i^+(y+x)$ if and only if $A_i^+(x) = A_i^+(-y+x+y)$ for all i and for x, y in F.
- (ii) $A_i^-(x+y) = A_i^-(y+x)$ if and only if $A_i^-(x) = A_i^-(-y+x+y)$ for all i and for x, y in F.
- (iii) $A_{i}^{+}(xy) = A_{i}^{+}(yx)$ if and only if $A_{i}^{+}(x) = A_{i}^{+}(y^{-1}xy)$ for all i and for $x \neq 0$, $y \neq 0$ in F.
- (iv) $A_i^-(xy) = A_i^-(yx)$ if and only if $A_i^-(x) = A_i^-(y^{-1}xy)$ for all i and for $x \neq 0$, $y \neq 0$ in F. Proof:
- (i) Let x, y be in F. Assume that $A_i^+(x+y) = A_i^+(y+x)$, so, $A_i^+(-y+x+y) = A_i^+(-y+y+x) = A_i^+(0+x) = A_i^+(0+x)$ $A_i^+(x)$ for all i and for x, y in F. Conversely, assume that $A_i^+(x) = A_i^+(-y+x+y)$, then $A_i^+(x+y) =$ $A_i^+(x+y+x-x) = A_i^+(y+x)$ for all i and for x, y in F. (ii) Assume $A_i^-(x+y) = A_i^-(y+x)$, then $A_i^-(-y+x+y) = A_i^-(-y+y+x) = A_i^-(0+x) = A_i^-(x)$ for all i and for x, y in F. Conversely, assume that $A_{i}^{-}(x) = A_{i}^{-}(-y+x+y)$, so, $A_{i}^{-}(x+y) = A_{i}^{-}(x+y+x-x) = A_{i}^{-}(y+x)$ for all i and for x, y in F. (iii) Let $x \neq 0$

 $0, y \neq 0$ be in F. Assume that $A_i^+(xy) = A_i^+(yx)$, so, $A_i^+(y^{-1}xy) = A_i^+(y^{-1}yx) = A_i^+(1x) = A_i^+(x)$ for all i and for $x \neq 0, y \neq 0$ in F. Conversely, assume that $A_i^+(x) = A_i^+(y^{-1}xy)$, then $A_i^+(xy) = A_i^+(xyxx^{-1}) = A_i^+(xyxx^{-1})$

ISSN NO: 2249-7455

 $A_i^+(yx)$ for all i and for $x \neq 0$, $y \neq 0$ in F. (iv) Assume $A_i^-(xy) = A_i^-(yx)$, then $A_i^-(y^-1xy) = A_i^-(y^-1xy) = A_i^-(1x) = A_i^-(x)$ for all i and for $x \neq 0$, $y \neq 0$ in F. Conversely, assume that $A_i^-(x) = A_i^-(y^-1xy)$ so

 $A_i^-(xy) = A_i^-(xyxx^{-1}) = A_i^-(yx)$ for all i and for $x \neq 0$, $y \neq 0$ in F.

3.6 Theorem:

If $A = \langle A_i^+, A_i^- \rangle$ is a bipolar valued multi fuzzy subfield of a field F, then

 $H = \{ x \in F \mid A_i^+(x) = 1, A_i^-(x) = -1 \text{ for all } i \} \text{ is either empty or is a subfield of } F.$

Proof:

If no element satisfies this condition, then H is empty. If x and y in H, then $A_i^+(x-y) \ge \min\{A_i^+(x), A_i^+(y)\} = \min\{1, 1\} = 1$. Therefore $A_i^+(x-y) = 1$ for all i. And $A_i^-(x-y) \le \max\{A_i^-(x), A_i^-(y)\} = \max\{-1, -1\} = -1$. Therefore $A_i^-(x-y) = -1$ for all i. That is $x-y \in H$. If x and $y \ne 0$ in H, then $A_i^+(xy^{-1}) \ge \min\{A_i^+(x), A_i^+(y)\} = \min\{1, 1\} = 1$. Thus $A_i^+(xy^{-1}) = 1$ for all i. And $A_i^-(xy^{-1}) \le \max\{A_i^-(x), A_i^-(y)\} = \max\{-1, -1\} = -1$. Therefore $A_i^-(xy^{-1}) = -1$ for all i. That is $xy^{-1} \in H$. Hence H is a subfield of F. Hence H is either empty or is a subfield of F.

3.7 Theorem:

If $A = \langle A_i^+, A_i^- \rangle$ is a bipolar valued multi fuzzy subfield of a field F, then $H = \{ x \in F \mid A_i^+(x) = A_i^+(0) = A_i^+(1) \text{ and } A_i^-(x) = A_i^-(0) = A_i^-(1) \text{ for all } i \}$ is a subfield of F, where 0 and 1 are identity elements.

Proof:

By Theorem 2.1, $A_i^+(-x) = A_i^+(x) = A_i^+(0)$ and $A_i^-(-x) = A_i^-(x) = A_i^-(0)$ for all i. Thus $-x \in H$. If x, $y \in H$, then $A_i^+(x-y) \ge \min\{A_i^+(x), A_i^+(y)\} = \min\{A_i^+(0), A_i^+(0), A_i^+(0)\} = A_i^+(0)$ and $A_i^+(0) \ge A_i^+(x-y)$. Thus $A_i^+(0) = A_i^+(x-y)$ for all i. Also $A_i^-(x-y) \le \max\{A_i^-(x), A_i^-(y)\} = \max\{A_i^-(0), A_i^-(0), A_i^-(0)\} = A_i^-(0)$ and $A_i^-(0) \le A_i^-(x-y)$. Thus $A_i^-(0) = A_i^-(x-y)$ for all i. Therefore $x-y \in H$. By Theorem 2.1, $A_i^+(x^{-1}) = A_i^+(x) = A_i^+(1)$ and $A_i^-(x^{-1}) = A_i^-(x) = A_i^-(1)$ for all i. Thus $x^{-1} \in H$. If $x, y \ne 0 \in H$, then $A_i^+(xy^{-1}) \ge \min\{A_i^+(x), A_i^+(y)\} = \min\{A_i^+(1), A_i^+(1)\} = A_i^+(1)$ and $A_i^+(1) \ge A_i^+(xy^{-1})$. Thus $A_i^-(1) = A_i^-(xy^{-1})$ for all i. Also $A_i^-(xy^{-1}) \le \max\{A_i^-(x), A_i^-(y)\} = \max\{A_i^-(1), A_i^-(1)\} = A_i^-(1)$ and $A_i^-(1) \le A_i^-(xy^{-1})$. Thus $A_i^-(1) = A_i^-(xy^{-1})$ for all i. Therefore $xy^{-1} \in H$. Hence H is a subfield of H.

3.8 Theorem:

If $A = \langle A_i^+, A_i^- \rangle$ and $B = \langle B_i^+, B_i^- \rangle$ are two bipolar valued multi fuzzy subfields of a field F, then their intersection $A \cap B$ is a bipolar valued multi fuzzy subfield of G.

Proof:

 $\text{Let } A = \{< x, \, A_i^+(x), \, A_i^-(x) > / \, x \in F\}, \, B = \{< x, \, B_i^+(x), \, B_i^-(x) > / \, x \in F\} \, \text{ for all i. Let } C = A \cap B \, \text{ and } C = \{< x, \, C_i^+(x), \, C_i^-(x) > / \, x \in F\}. \, \text{Then } C_i^+(x-y) = \min \, \{ \, A_i^+(x-y), \, B_i^+(x-y) \, \} \geq \min \, \{ \, \min \, \{ A_i^+(x), \, A_i^+(y) \, \}, \, \min \, \{ B_i^+(x), \, B_i^+(y) \, \} \} \geq \min \, \{ \, C_i^+(x), \, B_i^+(x), \, B_i^+(x),$

3.9 Theorem:

The intersection of a family of bipolar valued multi fuzzy subfields of a field F is a bipolar valued multi fuzzy subfield of F.

Proof:

The proof follows from Theorems 2.8.

REFERENCES:

- 1. Anitha.M.S., Muruganantha Prasad & K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
- 2. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, *Journal of mathematical analysis and applications*, 69(1979),124-130.
- 3. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411.
- 4. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
- 5. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, *Bull. Malays.Math. Sci. Soc.* (2) 32(3) (2009), 361–373.
- 6. K.M.Lee, Bipolar-valued fuzzy sets and their operations. *Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.*
- 7. K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. *J. fuzzy Logic Intelligent Systems*, 14 (2) (2004), 125-129.
- 8. Sabu Sebastian and T.V.Ramakrishnan, Multi-fuzzy sets, *International Mathematical Forum*, 6, 2010, no.50, 2471 2476.
- 9. Sabu Sebastian and T.V.Ramakrishnan, Multi-fuzzy subgroups, *Int.J.Contemp.Math.Sciences*, *Vol.* 6, 2011, no.8, 365 372.
- 10. Samit Kumar Majumder, Bipolar Valued fuzzy Sets in Γ-Semigroups, *Mathematica Aeterna, Vol. 2, no.* 3(2012), 203 213.
- 11. B.Yasodara and K.E.Sathappan, Bipolar-valued multi fuzzy subsemirings of a semiring, *International Journal of Mathematical Archive*, 6(9), 2015, 75–80.
- 12. B.Yasodara and K.E.Sathappan, Homomorphism and anti-homomorphism of bipolar-valued multi fuzzy subsemirings of a semiring, *Bulletin of Mathematics and Statistics Research*, Vol.3 Issu.3, 2015, 229 233.
- 13. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.