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1 Introduction

In 1960, Levine [?] initiated the concept of strongly continuous function in
topological spaces. Later many authors generalized some results on the relation
between continuous function and strongly continuous function. Characterizations
and composite functions of strongly continuous functions were discussed by Shashi
Prabha Arya and Ranjana Gupta[?]. Gowri and Pavithra[?] initiated the concept
of k∗-continuous funcitons in ideal closure spaces. In this paper, we defined and
discussed the properties of strongly k∗-continuous functions in ideal closure spaces.
Then the relative results between k∗-continuous function and strongly k∗-continuous
function were derived. In addition the composition of two strongly k∗-continuous
function and weakly k∗-continuous function were also characterized.

In the last section the concept of completely k∗-continuous function was also in-
troduced and studied. Finally the relation between k∗-continuous function, strongly
k∗-continuous function and completely k∗-continuous function were discussed using
some examples.

2 Preliminaries

In this section, we recall the basic definitions of ideal closure spaces.

Definition 2.1 [?] (X,=) be a topological space. An Ideal I on a topological space
is a collection of non empty collections of subsets of X which satisfies:
(1) ∅ ∈ I
(2) A ∈ I,B ⊆ A implies B ∈ I,
(3) A ∈ I,B ∈ I implies A ∪B ∈ I.
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If (X,=) is a topological space and I is an Ideal on X. Then (X,=, I) is called an
Ideal topological space or an Ideal space.

Definition 2.2 [?] Let P (X) be the power set of X. Then the operator
(.)∗ : P (X)→ P (X) is called a local function of A with respect to = and I, is define as
follows:For A ⊆ X, A∗(I,=∗) = {x ∈ X : U ∩A /∈ I for every open set U containing x}

Additionally, cl∗(A) = A ∪A∗ defines Kuratowski closure operator for a topology
=∗. Here =∗ is finer than =.

Definition 2.3 [?] let X be a non-empty set. I be an Ideal on X.
Let A∗ : P (X)→ P (X) be a function of A with respect to I and =,.
Let k∗(A) = A ∪A∗ defines Kuratowski closure operator for a topology.
Then the function k∗ : P (X)→ P (X) satisfying,

(1) k∗(∅) = ∅
(2) A ⊂ k∗(A)
(3) k∗(A ∪B)=k∗(A) ∪ k∗(B) ∀A,B ⊂ X.
(4) k∗(A) = k∗(k∗(A)) ∀A ⊂ X is called a closure operator on X. The

structure (X, I, k∗) is called an Ideal Closure Space.

Example 2.4 X = {a, b, c} = = {X, ∅, {a} , {c} , {a, c}}. I = {∅, {c}}
(1) A = {a, c} A∗ = {a, b} k∗(A) = A ∪A∗ =⇒ k∗ {a, c} =X.
(2) A = {b, c} A∗ = {b} k∗(A) = A ∪A∗ =⇒ k∗ {b, c} ={b, c}.
(3) A = {a, b} A∗ = {a, b} k∗(A) = A ∪A∗ =⇒ k∗ {a, b} ={a, b}.
(4) A = X A∗ = {a, b} k∗(A) = A ∪A∗ =⇒ k∗(X) = X
(5) A = ∅ A∗ = ∅ k∗(A) = A ∪A∗ =⇒ k∗(∅) =∅.
(6) A = {a} A∗ = {a, b} k∗(A) = A ∪A∗ =⇒ k∗ {a} ={a, b}.
(7) A = {b} A∗ = {b} k∗(A) = A ∪A∗ =⇒ k∗ {b} ={b}.
(8) A = {c} A∗ = ∅ k∗(A) = A ∪A∗ =⇒ k∗ {c} ={c}.

Then (X, I, k∗) is an Ideal Closure Space.

Definition 2.5 [?] A subset A of an Ideal closure space (X, I, k∗) is said to be closed
if k∗(A) = A.

Definition 2.6 [?] A subset A of an Ideal closure space (X, I, k∗) is said to be open
if k∗(X −A) = X −A (i.e) Int∗(A) = A.

Definition 2.7 [?] The set Int A with respect to the closure operator k∗ is defined
as Int∗(A) = X − k∗(X −A)(i.e)[k∗(AC)]C , where AC = X −A.

Definition 2.8 [?] (X, I, k∗) is an Ideal closure space than the associate topology
on X is =∗ =

{
AC ; k∗(A) = A

}
. Here = is not equal to =∗

Definition 2.9 [?] A subset A in an Ideal closure space (X, I, k∗) is called neigh-
bourhood of x if x ∈ Int∗(A).

Definition 2.10 [?] Let (X, I, k∗) be an Ideal closure space. An Closure space
(Y, I, k∗Y ) is called a subspace of (X, I, k∗) if Y ⊆ X and k∗Y (A) = k∗(A) ∩ Y ,
∀A ⊆ Y .
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Definition 2.11 A subset A of an Ideal closure space (X, I, k∗) is said to be regular
open if Int∗(k∗(A)) = A.

Definition 2.12 A subset A of an Ideal closure space (X, I, k∗) is said to be regular
closed if k∗(Int∗(A)) = A.

Definition 2.13 [?] Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. A func-

tion f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is said to be k∗-continuous if f (k∗1(A)) ⊆ k∗2 (f(A)),

for every A ⊂ X.

3 Strongly k∗-Continuous Function In Ideal Closure Spaces

Definition 3.1 Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. A function

f : (X, I1, k
∗
1) → (Y, I2, k

∗
2) is said to be strongly k∗-continuous if for every A ⊂ X,

f(k∗1(A) ⊆ f(A).

Example 3.2 .
X = {a, b, c}; Y = {x, y, z}
=1 = {X, ∅, {a} , {b} , {c} , {a, b} , {b, c} , {c, a}},
I1 = {∅, {a, b}}; =2 = {Y, {x} , {z} , {x, z}}; I2 = {∅}
k∗1(a) = {a}; k∗2(x) = {x, y}
k∗1(b) = {b}; k∗2(y) = {y}
k∗1(c) = {c}; k∗2(z) = {y, z}
k∗1 {a, b} = {a, b}; k∗2 {x, y} = {x, y}
k∗1 {b, c} = {b, c}; k∗2 {y, z} = {y, z}
k∗1 {c, a} = {c, a}; k∗2 {z, x} = Y
k∗1(X) = X; k∗2(Y ) = Y
k∗1(∅) = ∅; k∗2(∅) = ∅
f is a mapping from (X, I1, k

∗
1) → (X, I2, k

∗
2) defined by f(a) = y, f(b) = z, f(c) = x.

Here f is strongly k∗-continuous function.

Theorem 3.3 Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. A function

f : (X, I1, k
∗
1) → (X, I2, k

∗
2) is strongly k∗-continuous if and only if f−1(B) is closed

for all B ⊆ Y

Proof: Let B ⊆ Y , f is strongly k∗-continuous function.
To prove that f−1(B) is closed =⇒ k∗1(f−1(B))=f−1(B). In order to prove above
result we have to prove following two conditions,
(1) f−1(B) ⊆ k∗1(f−1(B))
Let p ∈ k∗1(f−1(B)) implies p ∈ f−1(B) (by using the properties of ideal closure
space A ⊆ k∗(A)). Therefore f−1(B) ⊆ k∗1(f−1(B)). Hence (1) is proved.
(2) k∗1(f−1(B) ⊆ f−1(B)
Let p ∈ f−1(B), f(P ) ∈ B, by the definition of strongly k∗-continuous function we
get f(k∗1(P )) ∈ B then k∗1(P ) ∈ f−1(B) taking ideal closure operator on both sides
we get k∗1(k∗1(P )) ∈ k∗1(f−1(B)) then k∗1(P ) ∈ k∗1(f−1(B)), p ∈ k∗1(f−1(B)) therefore
k∗1(f−1(B)) ⊆ f−1(B). Hence (2) is proved.
From (1) and (2) k∗1(f−1(B))=f−1(B). Therefore f−1(B) is closed, for all B ⊆ Y .
Conversely, Let A ⊂ X then A ⊂ f−1(f(A)), k∗1(A) ⊂ k∗1(f−1f(A)). Since f−1(f(A))
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is closed. Therefore k∗1(A) ⊂ f−1(f(A)), f(k∗1(A)) ⊂ f(A)). Hence f is strongly k∗-
continuous function. �

Theorem 3.4 A function f : (X, I1, k
∗
1) → (X, I2, k

∗
2) is strongly k∗-continuous if

and only if f−1(B) is open for all B ⊆ Y .

Proof: A function f : (X, I1, k
∗
1) → (X, I2, k

∗
2) is strongly k∗-continuous and to

prove that f−1(B) is open in order to show that we just prove that k∗1(X−f−1(B)) =
X − f−1(B), let x ∈ k∗1(X − f−1(B)), f(x) ∈ f(k∗1(X − f−1(B))) then f(x) ∈
f(X−f−1(B)) (since f is strongly k∗-continuous), f(x) ∈ [f(X)−ff−1(B)], f(x) ∈
Y − B that is x ∈ f−1(Y − B), x ∈ X − f−1(B) therefore k∗1(X − f−1(B) ⊆
X − f−1(B).......(1)
Now let x ∈ X − f−1(B), x ∈ f−1(Y ) − f−1(B), x ∈ f−1(Y − B) which gives
f(x) ∈ Y −B by the definition of strongly k∗-continuous function we get f(k∗1(x)) ∈
Y −B, k∗1(x) ∈ f−1(Y −B), k∗1(x) ∈ X − f−1(B) then taking ideal closure operator
on both sides we get k∗1(k∗1(x)) ∈ k∗1(X − f−1(B)), k∗1(x) ∈ k∗1(X − f−1(B), x ∈
k∗1(X − f−1(B))........(2)
From (1) and (2) k∗1(X − f−1(B)) = X − f−1(B). Hence f−1(B) is open in X.
Conversely let A ⊂ X then A ⊂ f−1(f(A)) then k∗1(X − A) ⊂ k∗1(X − f−1f(A)) ⊂
(X − f−1f(A)), since f−1(f(A)) is open, f(k∗1(X − A)) ⊂ f(X − A). Hence f is
strongly k∗-continuous function. �

Corollary 3.5 A function f : (X, I1, k
∗
1) → (X, I2, k

∗
2) is strongly k∗-continuous if

and only if f−1(B) is both open and closed for all B ⊆ Y .

Proof: The proof follows immediately from theorem 3.3 and theorem 3.4. �

Theorem 3.6 Let a function f : (X, I1, k
∗
1) → (X, I2, k

∗
2) then the following are

equal.
(i) f is strongly k∗-continuous.
(ii)For every subset B ⊆ Y then k∗1(f−1(B)) ⊆ f−1(B).

Proof: .
(i) =⇒ (ii)
Let B ⊆ Y then f−1(B) ⊆ X. Since f is strongly k∗-continuous we get f(k∗1(f−1(B))) ⊆
f(f−1(B)) ⊆ B therefore f−1(f(k∗1(f−1(B)))) ⊆ f−1(B). Hence k∗1(f−1(B)) ⊆
f−1(B).
(ii) =⇒ (i)
A ⊂ X, B ⊂ Y , let a function f : (X, I1, k

∗
1) → (X, I2, k

∗
2) then f(A) ⊆ B, A ⊆

f−1(B) from (ii) B ⊆ Y , k∗1(f−1(B)) ⊆ f−1(B), f(k∗1(f−1(B))) ⊆ B, f(k∗1(A)) ⊆
f(A). Therefore f is strongly k∗-continuous. �

Theorem 3.7 Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. Let (A, I, k∗A)

be a subspace of (X, I1, k
∗
1). if f: (X, I1, k

∗
1) → (Y, I2, k

∗
2) is strongly k∗-continuous

then f∣∣A: (A, I, k∗A) → (Y, I2, k
∗
2) is strongly k∗-continuous.

Proof: Let A ⊆ X, B ⊂ Y . Let (f∣∣A)−1(B) = f−1(B) ∩ A. Since f is strongly k∗-

continuous therefore f−1(B) is both open and closed in X. It follows that f−1(B)∩A
is also relatively both open and closed in A. Hence f∣∣A is strongly k∗-continuous. �
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Theorem 3.8 Let (X, I1, k
∗
1), (Y, I2, k

∗
2) and (Z, I3, k

∗
3) be ideal closure spaces. Let

f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is strongly k∗-continuous and g: (Y, I2, k

∗
2) → (Z, I3, k

∗
3)

be any function then g ◦ f :(X, I1, k
∗
1) → (Z, I3, k

∗
3) is strongly k∗-continuous.

Proof: Let A be any subset of Z. Then g−1(A) is a subset of Y. Since f is strongly
k∗-continuous therefore f−1(g−1(A)) is both open and closed subset of X that is
g−1(f−1(A)) is both open and closed then (g ◦ f)−1(A) is both open and closed
subset of X. Hence g ◦ f is strongly k∗-continuous. �

Definition 3.9 A function f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is said to be weakly

k∗-continuous if for each point x ∈ X and each open set H containing f(x) there is
an open set G containing x such that f(G) ⊂ k∗2(H).

Theorem 3.10 If f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is a weakly k∗-continuous function

and g: (Y, I2, k
∗
2) → (Z, I3, k

∗
3) is strongly k∗-continuous then g ◦ f :(X, I1, k

∗
1) →

(Z, I3, k
∗
3) is strongly k∗-continuous.

Proof: Let A be any subset of Z. Since g is strongly k∗-continuous therefore g−1(A)
is both open and closed subset of Y . Since f is weakly k∗-continuous and g−1(A) is
an open subset of Y therefore k∗1[f−1(g−1(A))] ⊆ f−1[k∗1(g−1(A))] = f−1(g−1(A)) =
(g ◦ f)−1(A). It follows that (g ◦ f)−1(A) is a closed set of X. Hence g ◦ f is strongly
k∗-continuous. �

Theorem 3.11 If f: (X, I1, k
∗
1)→ (Y, I2, k

∗
2) is strongly k∗-continuous function and

g: (Y, I2, k
∗
2) → (Z, I3, k

∗
3) is k∗-continuous then g ◦ f :(X, I1, k

∗
1) → (Z, I3, k

∗
3) is k∗-

continuous.

Proof: Let f is strongly k∗-continuous function then f(k∗1(A)) ⊂ f(A), A ⊂ X
Let g is k∗-continuous function then g(k∗2(A)) ⊂ k∗3(g(A)), A ⊂ X. Now we have to
prove that g ◦ f is k∗-continuous function that is g ◦ f(k∗1(A)) ⊂ k∗3(g ◦ f(A)).
Let g(f(k∗1(A))) ⊂ g(f(A)), where f is strongly k∗-continuous then g(f(A)) ⊂
k∗3(g(f(A))) ⊂ k∗3(g ◦ f(A)), where g is k∗-continuous. Therefore g ◦ f(k∗1(A)) ⊂
k∗3(g ◦ f(A)). Hence g ◦ f is k∗-continuous function. �

Theorem 3.12 If f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is k∗-continuous function and

g: (Y, I2, k
∗
2)→ (Z, I3, k

∗
3) is strongly k∗-continuous then g◦f :(X, I1, k

∗
1)→ (Z, I3, k

∗
3)

is strongly k∗-continuous.

Proof: Let f is k∗-continuous then f(k∗1(A)) ⊂ k∗2(f(A)), A ⊂ X.
Let g is strongly k∗-continuous then g(k∗2(A)) ⊂ g(A), A ⊂ X. To prove that
g ◦ f(k∗1(A)) ⊂ g ◦ f(A), A ⊂ X. Now let g(f(k∗1(A))) ⊂ g(k∗2f(A)) ⊂ g(f(A)) ⊂
g ◦ f(A), A ⊂ X. Therefore g ◦ f(k∗1(A)) ⊂ g ◦ f(A). Hence g ◦ f is strongly
k∗-continuous function. �

Theorem 3.13 If a function f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is strongly k∗-continuous

then it is k∗-continuous.

Proof: Let f is strongly k∗-continuous. For every subset B in Y then f−1(B) is
both open and closed. Therefore inverse image of every open set in Y is open in X.
Hence f is k∗-continuous. �
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Remark 3.14 But converse of the above theorem is not true shown in the following
example

Example 3.15 X = {a, b, c}; Y = {x, y, z}
=1 = {X, ∅, {a} , {c} , {a, c}}; =2 = {Y, {x} , {z} , {x, z}};
I1 = {∅, {c}}; I2 = {∅, {y}}
k∗1(a) = {a, b}; k∗2(x) = {x, y}
k∗1(b) = {b}; k∗2(y) = {y}
k∗1(c) = {c}; k∗2(z) = {y, z}
k∗1 {a, b} = {a, b}; k∗2 {x, y} = {x, y}
k∗1 {b, c} = {b, c}; k∗2 {y, z} = {y, z}
k∗1 {c, a} = X; k∗2 {z, x} = Y
k∗1(X) = X; k∗2(Y ) = Y
k∗1(∅) = ∅; k∗2(∅) = ∅
f is a mapping from (X, I1, k

∗
1) → (X, I2, k

∗
2) defined by f(a) = x, f(b) = y, f(c) =

Z. Here f is k∗-continuous function then let A = a implies f(k∗1(a)) 6⊂ f(a) then
f(a, b) 6⊂ {x} that is {x, y} 6⊂ {x}. Therefore f is not strongly k∗-continuous.

Proposition 3.16 Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. A map f:

(X, I1, k
∗
1) → (Y, I2, k

∗
2) be a bijection then the following statements are equal.

(i) The inverse map f−1 : (Y, I2, k
∗
2)→ (X, I1, k

∗
1) is strongly k∗-continuous.

(ii) f is both open map and closed map.

Proof: .
(i) =⇒ (ii)
Let f−1 : (Y, I2, k

∗
2)→ (X, I1, k

∗
1) is strongly k∗-continuous and let B be any subset

in X then (f−1)−1(B) is both open and closed in Y which implies f(B) is both open
and closed. Thus (1) =⇒ (ii).
(ii) =⇒ (i)
Let f is both open and closed then BinX, f(B) is both open and closed but
f(B)=(f−1)−1(B). Thus f−1 is strongly k∗-continuous. �

4 Completely k∗-Continuous Functions in Ideal Closure
Spaces

Definition 4.1 Let (X, I1, k
∗
1) and (Y, I2, k

∗
2) be ideal closure spaces. A function f:

(X, I1, k
∗
1) → (Y, I2, k

∗
2) is said to be completely k∗-continuous at a point x ∈ X if

for every neighbourhood M of f(x) there is a regular open neighbourhood N of x
such that f(N) ⊂M .

Theorem 4.2 Let a map f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is completely k∗-continuous if

and only if inverse image of every open subset of Y is a regular open subset of X.

Proof: Assume that f is completely k∗-continuous and let B be any open set in Y
we have to show that f−1(B) is regular open in X. If f−1(B) = ∅ there is nothing
to prove so let f−1(B) 6= ∅ and let x ∈ f−1(B) so that f(x) ∈ B by completely
k∗-continuous of f , there exist an regular open set Nx in X such that x ∈ Nx and

6
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f(Nx) ⊂ B that is x ∈ Nx ⊂ f−1(B). This shows that f−1(B) is a regular open
neighbourhood in X.
Conversely let f−1(B) is regular open in X for every open set B in Y. We shall
show that f is completely k∗-continuous at x ∈ X. Let B be any open set in Y
such that f(x) ∈ B so that x ∈ f−1(B), by hypothesis f−1(B) is regular open
in X. If f−1(B) = N then N is regular open set in X containing x such that
f(N) = f(f−1(B)) ⊂ B implies f(N) ⊂ B. Hence f is completely k∗-continuous. �

Theorem 4.3 Let a map f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is completely k∗-continuous if

and only if inverse image of every closed subset of Y is a regular closed subset of X.

Proof: .
Assume that f is completely k∗-continuous and let F be any closed set in Y. To show
that f−1(F ) is regular closed in X and Y −F is open in Y, f−1(Y −F ) = X−f−1(F ),
since f is completely k∗-continuous therefore f−1(Y − F ) is regular open in X then
X − f−1(F ) is regular open that is f−1(F ) is regular closed in X.
Conversely let f−1(F ) is regular closed in X for every closed set F in Y. We want to
show that f is completely k∗-continuous. Let B be any open set in Y. Then Y −B
is closed in Y and so by hypothesis f−1(Y −B) = X−f−1(B) is regular closed in X
that is f−1(B) is regular open in X. Hence f is completely k∗-continuous by using
previous theorem. �

Lemma 4.4 In a ideal closure spaces (X, I, k∗), U is regular open implies U is open.

Proof: If U is regular open
=⇒ U = int∗(k∗(U))
=⇒ U = X − k∗(X − U)
=⇒ X − U = k∗(X − U)
=⇒ U is open.
There fore if f is regular open then U is open. �

Theorem 4.5 If f is completely k∗-continuous then each point x ∈ X and for each
open neighbourhood of f(x) there is a open neighbourhood N of x such that f(N) ⊂
B.

Proof: If f is completely k∗-continuous. Since B is open therefore Y \ B is closed
and consequently f−1(Y \ B) = f−1(Y ) \ f−1(B) = X \ f−1(B) is regular closed
that is f−1(B) is regular open. Also x ∈ f−1(B) = N(say). Here N is regular open
neighbourhood of x which implies N is open neighbourhood of x by using previous
lemma then f(N) ⊂M .
Obviously, every strongly k∗-continuous function is completely k∗-continuous and
every completely k∗-continuous mapping is k∗-continuous. The converse implications
do not held as is shown by the following example. �

Example 4.6 Let X = {a, b, c, d}, =1 = {X, ∅, {a, b} , {c, d}}, I1 = {∅, {c} , {a, c}}.
Then ideal closure space (X, I1, k

∗
1) is defined by k∗1(a) = {a, b}, k∗1(b) = {a, b},

k∗1(c) = {c}, k∗1(d) = {c, d}, k∗1(a, b) = {a, b}, k∗1(b, c) = {a, b, c}, k∗1(c, d) = {c, d},
k∗1(a, d) = X, k∗1(c, a) = {a, b, c}, k∗1(b, d) = X k∗1(a, b, c) = {a, b, c}, k∗1(b, c, d) =
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k∗(a, c, d) = k∗1(a, b, d) = X.
Let Y = {x, y, z}, =2 = {Y, ∅, {a, c}}, I2 = {∅, {b}}.
(X, I2, k

∗
2) is followed by,

k∗2(x) = Y ; k∗2(y) = {y}; k∗2(z) = Y ; k∗2 {x, y} = Y ; k∗2 {y, z} = Y ; k∗2 {z, x} = Y ;
k∗2(Y ) = Y ; k∗2(∅) = ∅.
f is a mapping from (X, I1, k

∗
1) → (X, I2, k

∗
2) defined by f(a) = x, f(b) = z, f(c) =

z, f(d) = x. Here f is completely k∗-continuous function. Now let A = {a} using
the definition of strongly k∗-continuous function f(k∗1(a)) 6⊂ f(a). Therefore f is
not strongly k∗-continuous function.

Example 4.7 .
Let X = {a, b, c, d}, =1 = {X, ∅, {a, c, d} , {c} , {a}}, I1 = {∅, {b}}. Then ideal
closure space (X, I1, k

∗
1) is defined by k∗1(a) = {a, b, d}, k∗1(b) = {b}, k∗1(c) =

{b, c, d}, k∗1(d) = {b, d}, k∗1(a, b) = {a, b, d}, k∗1(b, c) = {b, c, d}, k∗1(c, d) = {b, c, d},
k∗1(a, d) = {a, d}, k∗1(c, a) = X,k∗1(b, d) = X, k∗1(a, b, c) = X, k∗1(b, c, d) = {b, c, d}
k∗(a, c, d) = X k∗1(a, b, d) = {a, b, d}, k∗1(X) = X, k∗1(∅) = ∅
Let Y = {x, y, z, t}, =2 = {X, ∅, {x, y} , {x} , {y}}, I2 = {∅, {z}}. Then ideal clo-
sure space (Y, I2, k

∗
2) is defined by k∗2(x) = {x, y, t}, k∗2(y) = {y, z, t}, k∗2(z) =

{z}, k∗2(d) = {z, t}, k∗2(x, y) = Y , k∗2(y, z) = Y , k∗2(z, t) = {z, t}, k∗2(x, t) =
{x, z, t}, k∗2(z, x) = {x, z, t}, k∗2(y, t) = {y, z, t} k∗2(x, y, z) = X, k∗2(y, z, t) = {y, z, t}
k∗2(x, z, t) = {z, z, t} k∗1(x, y, t) = X, k∗2(Y ) = Y , k∗2(∅) = ∅
f is a mapping from (X, I1, k

∗
1) → (Y, I2, k

∗
2) defined by f(a) = x, f(b) = z, f(c) =

y, f(d) = t. Here f is k∗-continuous function but not completely k∗-continuous func-
tion.

Example 4.8 Consider the function f in Example 4.6. Here f is completely k∗-
continuous function. Let the restriction of X is defined by X

∣∣
A

= {b, c, d} and ideal

closure space (X
∣∣
A
, I1, k

∗
X|A) is defined by

k∗X|A(b) = {b}; k∗X|A(c) = {c}; k∗X|A(d) = {d}; k∗X|A {b, c} = {b, c}; k∗X|A {c, d} =

X
∣∣
A

; k∗X|A {d, b} = X
∣∣
A

; k∗X|A(X
∣∣
A

) = X
∣∣
A

; k∗X|A(∅) = ∅.
Now the restriction of f is defined by as follows
f
∣∣
A

: (X
∣∣
A
, I1, k

∗
X|A) → (X, I2, k

∗
2) then f(b) = z, f(c) = z, f(d) = x. Here f

∣∣
A

is not completely k∗-continuous function. Hence the restriction of a completely k∗-
continuous function may fail to be completely k∗-continuous.

Theorem 4.9 If f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is completely k∗-continuous and g:

(Y, I2, k
∗
2) → (Z, I3, k

∗
3) is k∗-continuous then g ◦ f : (X, I1, k

∗
1) → (Z, I3, k

∗
3) is

completely k∗-continuous.

Proof: Let U be any open subset of Z. Since g is k∗-continuous therefore g−1(U) is
an open subset of Y. Since f is completely k∗-continuous therefore f−1(g−1(U)) is
a regular open subset of X that is (g ◦ f)−1(U) is regular open subset of X. Hence
g ◦ f is completely k∗-continuous. �

Corollary 4.10 The composite of two completely k∗-continuous mapping is com-
pletely k∗-continuous.

Definition 4.11 A mapping f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is said to be almost open if

the image of every regular open set is open.
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Theorem 4.12 If f: (X, I1, k
∗
1) → (Y, I2, k

∗
2) is almost open and onto with com-

pletely k∗-continuous and g: (Y, I2, k
∗
2) → (Z, I3, k

∗
3) is a mapping such that g ◦ f is

completely k∗-continuous then g is k∗-continuous.

Proof: Let G be any open subset of Z. Since g ◦ f is completely k∗-continuous
therefore (g ◦ f)−1(G) is regular open in X. Since f is almost open therefore f((g ◦
f)−1(G)) is an open subset of Y that is f(f−1(g−1(G))) = g−1(G) is an open subset
of Y. Hence g is k∗-continuous. �

5 Conclusion

In this paper, the important concepts of strongly k∗-continuous function and com-
pletely k∗-continuous functions in ideal closure space were introduced. Also the
restriction of strongly k∗-continuous function and composite of two strongly k∗-
continuous functions are analyzed.
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