A Comparative Study of the Existed Method and Formulation of Solutions of a Class of Standard Quadratic Congruence modulo an Odd Prime Integer Multiple of Eight

Prof. B M Roy
Head, Dept. Of Mathematics
Jagat Arts, Commerce \& I H P Science College, Goregaon, Dist. Gondia (M S)
(Affiliated to R T M Nagpur University, Nagpur)

Abstract

In this paper, finding solutions of a class of standard quadratic congruence modulo an odd prime multiple of eight, is compared with existed method \& the formulation by the author. Formulation of the solutions is proved time-saving, simple and quick than the existed method using CRT which is time-consuming. Formulation is the merit of the paper. No need to use Chinese Remainder Theorem.

Key-words: Chinese Remainder Theorem, Composite modulus, Quadratic Congruence.

INTRODUCTION

Here, a solvable standard quadratic congruence of composite modulus- an odd prime integer multiple of eight, is considered for discussion. It is of the type $x^{2} \equiv a^{2}(\bmod 8 p), \mathrm{p}$ being a positive prime integer. It is always solvable.

LITERATURE REVIEW

In different books on Number Theory, no formulation is found for the said congruence. Only the use of Chinese Remainder Theorem [1] is discussed. Much had been written on standard quadratic congruence of prime modulus but no formulation for quadratic congruence of composite modulus is found. A short discussion is found in the book of Thomas Koshy [2]. He used Chinese Remainder Theorem for solutions.

NEED OF RESEARCH

Chinese Remainder Theorem is a very lengthy procedure. It takes a long time. It is not a good and affordable method for students. To have remedy, formulation is necessary. This is the need of my research.

PROBLEM-STATEMENT

The congruence under consideration is: $x^{2} \equiv a^{2}(\bmod 8 p)$
with p an odd prime integer.

The problem is to compare the method of CRT to find the solutions of the congruence under consideration \& also by formulation by the author.
Solution by Existed Method
Consider the congruence $x^{2} \equiv a^{2}(\bmod 8 p)$.
It can be separated into two congruence: $x^{2} \equiv a^{2} \equiv b(\bmod 8)$ having four solutions and $x^{2} \equiv a^{2} \equiv c(\bmod p)$ having two solutions.
Hence, the congruence (1) has eight solutions. These are obtained by using CRT.
Consider the congruence $x^{2} \equiv 25(\bmod 152)$ i.e. $x^{2} \equiv 5^{2}(\bmod 8.19)$
Two separate congruence : $x^{2} \equiv 25 \equiv 1(\bmod 8)$ and $x^{2} \equiv 25 \equiv 3(\bmod 11)$.
Their solutions are: $x \equiv 1,3,5,7(\bmod 8)$ and $x \equiv 5,8(\bmod 11) \ldots$. How?
Then using CRT, the eight common solutions can be obtained which are
$x \equiv 5,147 ; 71,81 ; 33,119 ; 43,109(\bmod 152)$. [Tabular calculations not shown]
It takes at least 40 minutes!
Solutions by Formulation
Consider the congruence $x^{2} \equiv a^{2}(\bmod 8 p)$.
It is always solvable and the four obvious solutions are given by:
$x \equiv 8 p \pm a ; 4 p \pm a(\bmod 8 p) \equiv a, 8 p-a ; 4 p-a, 4 p+$
$a(\bmod 8 p)(2)$
Sometimes, we may have the congruence of the type: $x^{2} \equiv b(\bmod 8 p)$.
It can be written as $x^{2} \equiv b+k .8 p=a^{2}(\bmod 8 p)$ for some positive integer k [3].
Then its four obvious solutions are given by (2).
The other four solutions are given by: $x= \pm(2 p \pm a)$, if a is odd.
But if a is an even integer, the congruence has only four obvious solutions.
There is no other possibility for solutions.
But if $a=p$,then the solutions are $x \equiv p, 7 p ; 3 p, 5 p(\bmod 8 p)$.
Thus it has only four solutions.

ILLUSTRATIONS BY FORMULATION

Consider $x^{2} \equiv 25(\bmod 152)$. Here $152=8.19$ with $p=19 \& a=5$, an odd integer.
So, it has exactly eight solutions.
Four are given by $x \equiv 8 p \pm a ; 4 p \pm a(\bmod 8 p)$

$$
\begin{aligned}
& \equiv 152 \pm 5 ; 76 \pm 5(\bmod 152) \\
& \equiv 5,147 ; 71,81(\bmod 152)
\end{aligned}
$$

Also, as $a=5$, an odd integer, hence the other four solutions are:

$$
\begin{aligned}
& x \equiv \pm(2 p \pm a)(\bmod 8 p) \\
& \equiv \pm(38 \pm 5)(\bmod 8.19) \\
& \equiv \pm 33 ; \pm 43(\bmod 152)
\end{aligned}
$$

$$
\equiv 33,119 ; 43,109(\bmod 152) .
$$

Thus, required eight solutions are $x \equiv 5,147 ; 71,81 ; 33,119 ; 43,109(\bmod 152)$.
These are the same solutions as obtained in existed method, but in a short time in at most two minutes!!

Consider the congruence: $x^{2} \equiv 4(\bmod 104)$.
It can be written as $x^{2} \equiv 2^{2}(\bmod 8.13)$
It is of the type $x^{2} \equiv a^{2}(\bmod 8 p)$ with $p=13 \& a=2$.
Its four obvious solutions are $x \equiv 8 p \pm a ; 4 p \pm a(\bmod 8 p)$

$$
\begin{aligned}
& \equiv 104 \pm 2 ; 52 \pm 2(\bmod 104) \\
& \equiv 2,102 ; 50,54(\bmod 104)
\end{aligned}
$$

We see that $a=4$, an even integer.
Hence, other solutions do not exist.
Therefore, the above congruence has only four obvious solutions $x \equiv$ 2,102; 50, 54 (mod 104).
Consider another example as per need: $x^{2} \equiv 33(\bmod 88)$.
It can be written as $x^{2} \equiv 33+88=121=11^{2}(\bmod 88)$ with $a=11=p$.
It has exactly four obvious solutions:

$$
\begin{aligned}
x & \equiv 88 \pm 11 ; 44 \pm 11(\bmod 88) . \\
& \equiv 11,77 ; 33,55(\bmod 88) .
\end{aligned}
$$

CONCLUSION

In this paper, finding solutions of a class of solvable standard quadratic congruence of composite modulus- a prime multiple of eight is compared with existed method using CRT and the formulation by the author. Formulation gives solutions in less time.

MERIT OF THE PAPER

No need to use Chinese Remainder Theorem. Formulation is the merit of the paper. It is simple and quick.

REFERENCE

[1] Burton David M, Elementary Number Theory, Seventh Indian edition, Mc Graw Hill(Pvt) Ltd.
[2] Koshy Thomas, Elementary Number Theory with Applications, second edition, Indian Print, 2009.
[3] Roy B M , Discrete Mathematics \& Number Theory, First edition, Das Ganu Prakashan, Nagpur (INDIA)
[4] Zuckerman at el, An Introduction to The Theory of Numbers, fifth edition, Wiley student edition, INDIA, 2008.

