
Administration situated and Agent-based Architecture

Supporting Adaptable, Scenario-based and Context-mindful

Provision of Mobile e-Learning Services

KANIGIRI SURESH, YADLAPATY SRINIVAS
Assistant Professor1,2

Dept of CSE1,2,

SMEC, Hyderabad1, SIET, Hyderabad2

Abstract: This paper depicts an OMG's MDA-based approach for the improvement of an

administration situated and operator based middleware engineering supporting adaptable and

versatile, situation based and setting mindful arrangement of portable e-Learning administrations

inside InfoStation remote conditions. Considering the framework advancement as a procedure of

cycles, the approach gives a broad capacity to analyze diverse improvement perspectives and expand

the framework engineering well ordered. The initial two cycles, in particular the base middleware

design and the situation based administration, are depicted in detail. A recreation domain utilized for

testing the design is additionally introduced.

Keywords: m-Learning, adaptable software architecture, MDA-based approach, intelligent agents,

mobile access, InfoStation environment.

I. Introduction

A recognizable element of contemporary portable e-Learning (m-Learning) frameworks is the

anyplace whenever in any case perspective [1] of conveyance of electronic substance, which is

customized and redone to suit a specific versatile client [2], [3]. In the light of this pattern, we will

probably build up a product engineering which can bolster m-Learning administrations conveyed

inside a University grounds based InfoStation correspondence condition with circulated control. The

InfoStation worldview is an augmentation of the remote Internet, where portable customers

collaborate straightforwardly with Web specialist co-ops (i.e. InfoStations). The clients ask for

administrations (by utilizing their cell phones) from the closest InfoStation by means of accessible

Bluetooth (IEEE 802.15), WiFi (IEEE 802.11), or WiMAX (IEEE 802.16) associations. In our

approach, every application using the InfoStation framework comprises of two segments: (I) an

institutionalized middleware, which recognizes and finds the adjustments in the earth keeping in mind

the end goal to get ready satisfactory conveyance of asked for administrations; and (ii) an arrangement

of electronic administrations (eServices) – essentially e-Learning administrations – , which are

adjusted and controlled by this middleware. In the first InfoStation design [4], the InfoStations work

as middle people between the client cell phones and an InfoStation Center, on which an assortment of

eServices are sent and executed. Anyway in our engineering, the InfoStations are go betweens as well

as essentially benefit giving hubs. The usage of such engineering raises genuine difficulties. The

principle one among these is identified with the help of appropriated control, which to have the

capacity to recognize changes in nature (setting mindfulness) and as indicated by these progressions

to offer the asked for administrations in more adaptable and proficient way (versatility). In the

previous couple of years distinctive setting mindful frameworks for various reasons for existing were

displayed in the writing. A design like our own particular engineering is introduced in [5]. This setting

mindful design is made out of customers (moving hubs), setting server and middleware (settled hubs

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:523

associated through TCP/IP to the setting server). The middleware assumes critical part both in

recognizing the customers utilizing the Bluetooth innovation and in finding an appropriate executable

module as per the setting obtained from the setting server. Another design depicted in [6] utilizes a

Context Engine for setting mindful conveyance of Web benefits by using a govern construct approach

based with respect to first-arrange rationale for brought together handling of setting. In [7], a setting

intermediary engineering in light of cosmology for setting portrayal is displayed. A setting mindful

specialist co-op – a simple to a phone supplier – is portrayed in [8]. More typical setting mindful

designs is put away and prepared centralizedly whereby the middleware is utilized essentially as a go

between. In our design the setting is prepared essentially in the middleware parts conveyed on various

InfoStations. The assurance of a specific setting is proficient inside the structure of predefined

situations. To accomplish this, in specific cases it is important to recognize distinctive nearby

circumstances occurring at various minutes and in various system hubs (InfoStations). In cases like

these, synchronization between the middleware parts conveyed on various InfoStations is required.

Another specifics of our engineering is that it is being created as an operator based one so as to: •

Model enough a genuine circulated framework; • Allow for realization of distributed models for

control; • Show the pro-active behavior of the middleware (which is quite beneficial in many

situations); • Use more efficiently the information resources spread over different InfoStations.

Moreover, the agent-based architecture is implemented as a set of autonomous agents, which could be

easily extended with new agents that communicate by means of a standardized protocol, i.e. the

FIPA’s Agent Communication Language (ACL), [11]. This differs from the classic multi-tier

architectures in which the relations between components at the same tier are much stronger. In our

architecture we use tiers too; however, these are mostly logical groupings of autonomous components

based on their functional characteristics. Another important problem is the context-aware provision of

m-Learning services. To achieve context-awareness, the middleware must be able to identify/detect

all changes occurring in the environment and adapt its behavior accordingly. Essential here is the

concept of context. We use the Dey’s definition [12], according to which “context is any information

that can be used to characterize the situation at an entity”. The entity could be a person, a place, or an

object, which is considered relevant to the interaction between a user and an application, including the

user and the application themselves. Context could be of different type, e.g. location, identity, activity,

time. By utilizing the capabilities of the InfoStation infrastructure, in our architecture we want to

ensure trouble-free, transparent and adequate execution of user requests for services by taking into

account the changes occurring in regard to the user/device location, user mobile device, access

network type (Bluetooth, WiFi, WiMAX), user identity, etc. This paper presents our approach for the

development of a middleware architecture that is consistent with the fundamental principles of the e-

Learning systems development suggested by the IMS Global Education Consortium, such as

interoperability, service-orientation, component usage, layering, behaviors and data modeling,

multiple binding, and adoption [13]. The middleware is being developed step-by-step, whereby the

steps are considered as iterations. The first version of the middleware architecture, which was

developed by following this approach, is presented here. We also discuss an extension of the

architecture aimed at better control of service requests’ execution in different scenarios.

II. Approach

The improvement of setting mindful, adaptable and versatile designs is outstandingly troublesome

errand, which is difficult to finish without an obviously characterized approach and without

considering the major prerequisites without bounds framework. For the improvement of our m-

Learning framework we utilized a product advancement approach [14] for encouraging the utilization

of a specific design (InfoStation-based). The approach goes for the improvement of an administration

arranged and specialist based design for effective use in on-line e-Learning frameworks utilizing an

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:524

InfoStation foundation for getting versatile access to eServices and instructive assets inside a

University grounds [15], [16]. The approach depends on the thoughts recommended by the MDA

determination of OMG [17]. In similarity with this approach, a design was based on three levels

(Figure 1): • eServices level – speaks to and models (utilizing an appropriate formalism) the

usefulness of eServices gave by the framework; • Middleware level – an operator based multi-layered

level assuming an intercession part between the eServices level and the situations level. It offers

shared usefulness: on one hand, it contains specialists required for the execution of various situations,

and then again, it determines an arrangement of operators guaranteeing the best possible arrangement

of eServices; • Scenarios level – presents the highlights of the InfoStation engineering and the setting

composes bolstered by it (as various situations), which are utilized for getting to the eServices.

Figure 1. The levels and iterations of the approach used

 In addition, we examine the system development as a process of iterations. The term iteration –

borrowed from the Unified Software Development Process [18] – means a workflow or cooperation

between the developers at different levels so as to be able to use and share particular products and

artefacts. We define two types of iterations in our approach: (i) between the scenarios level and the

middleware level, and (ii) between the middleware level and the eServices level. In accordance with

this approach we suggest a hybrid middleware architecture built upon intelligent agents and eServices.

The eServices are convenient for the implementation of specific business functionality, but are static,

however. The necessary flexibility, adaptability and collaboration features of the architecture,

required for the context-aware middleware, are ensured by intelligent agents (which, however, are

unsuitable for the implementation of functionality). The agents spot any change in the

communications environment, carry out the adaptation necessary for correct processing of service

requests, and activate the desired eServices. The following lower-level iterations are envisaged for

realization in our architecture: • ‘Base Architecture’ – aimed to support the main scenarios

characterizing the operational specifics of the InfoStation network [19], a base middleware

architecture (presented in the next section) has been developed. More details on this can be found in

[20], [21]. • ‘Scenario-based Management’ – some important changes occurring in the user context

during the execution of the users’ service requests (e.g. the device mobility, when a user/device leaves

the service area/range of one InfoStation and enters another) can be detected and identified by the

system, only if the temporal aspect of this process is taken into consideration. Thus the goal of this

iteration is to develop concepts and formal models, and to realize efficient scenario-based

management of the offered eServices and active user sessions. • ‘Resource Deficit’ – in some cases

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:525

the user requests for particular services cannot be satisfied fully by the local InfoStation due to a

resource deficit (e.g. when the information needed to satisfy the service request is unavailable on the

local InfoStation). In these cases the service provision must be globalized in a manner involving other

InfoStations. The software needed to support this type of InfoStation’s interaction is developed as part

of this iteration. • ‘Adaptation’ – this iteration is concerned with problems related to strengthening the

architecture, e.g. to support adaptability. In our opinion, personalized e-Learning process can be fully

realized only by means of adaptive architectures, whereby the e-Learning content is clearly

distinguished from the three models that influence the learning process – the user model, the domain

model, and the pedagogical model. The user model presents all information related to the learner’s

individuality, which is essential for the realization of personalized learning process. The domain

model presents the structure of the topic/subject for study/learning. In addition, in our architecture we

want to support a goal-driven learning, whereby in case of a learner’s request sent to the system, a

concrete pedagogical goal is generated based on the pedagogical model used. The entire control of the

user session afterwards obeys this pedagogical goal. These three models are supported explicitly in

our architecture. They represent a strong foundation for seeking opportunities for adaptation to the

environmental/context changes so as to ensure more efficient personalized learning (in this sense we

aim at realization of a user/domain/pedagogical model-driven optimization).

III. Base Middleware Architecture

The first version of the InfoStation’s base middleware architecture, developed accordingly to this

approach, is shown in Figure 2. The various agents employed perform different actions as

summarized below. The Scanner agent searches for and finds mobile devices (within the range of the

InfoStation) with enabled/activated wireless interface corresponding to the type of the InfoStation. In

addition, this agent retrieves a list of services required by users (registered on their mobile devices

upon installation of the client part of the application and started automatically by the InfoStation

agents) and sends this to the Connection Adviser agent, which filters the list out. The filtration is

carried out with respect to a given (usually heuristic) criterion. Information needed for the filtration is

stored in a special database (DB). Finally, the Connection Adviser agent sends the filtered list to the

Connection Initiator agent, which initiates the communication required for obtaining the service(s)

requested by the user. This agent generates the so-called Connection Object, through which a

connection with the mobile device is established (e.g. over WiFi, Bluetooth, etc.). In addition, for

each active mobile device it generates a corresponding Connection Agent, to which it hands over the

control of the established wireless connection with this device. The internal architecture of the

Connection Agent contains three threads: an Agent Thread used for communication with the Query

Manager agent, and a Send Thread and a Receive Thread, which look after the wireless

communication with the mobile device. The Query Manager agent is one of the most sophisticated

components of the InfoStation’s architecture. It acts as a data distribution unit between the lower layer

and upper layer of the InfoStation. On one hand, the Query Manager prepares and determines where

information received from the mobile device is to be directed, e.g. to simple services, or to

sophisticated services via interface agents. For this purpose, this agent transforms the messages

coming from the Connection Agent into messages of the corresponding protocols, e.g. UDDI or

SOAP for simple services. The direct activation of simple services (for example Web services) is

possible without the mediation of Interface Agents. The latter are designed to maintain

communication with more sophisticated services by using more complex, semantic-oriented

protocols, e.g. OWL-S, [22]. In the opposite direction, the Query Manager agent transforms the

service execution results into messages understandable by the Personal Assistant Agent (PAA)

installed on the user mobile device. This is needed because the results must be returned to the relevant

PAA, which has requested the provision of the service on behalf of its user.

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:526

Figure 2. The InfoStation’s base middleware architecture

IV. Scenario-based Management

Due to the supported user mobility and device mobility, the following four main communications

scenarios are envisaged in the InfoStation architecture [23]: • ‘No change’ – illustrates the

straightforward provision of a m-Learning service within the range of the same InfoStation and

without change of the user device; • ‘Change of user mobile device’ – due to the inherent user

mobility, it is entirely possible that during the m-Learning service provision, the user may shift to

another mobile device (e.g. by switching to a device with greater capabilities, the user may experience

a much richer service environment and utilize a wider range of resources); • ‘Change of InfoStation’ –

within the InfoStation paradigm, the connection between the InfoStations themselves and the user

mobile devices is by definition geographically intermittent. With a number of InfoStations positioned

around a University campus, the users may pass through a number of InfoStation cells during the

service session. This transition between InfoStation cells (i.e. device mobility) must be completely

transparent to the user, ensuring the user has apparent un-interrupted access to the service; • ‘Change

of InfoStation and user mobile device’ – most complicated scenario whereby the user may change the

device simultaneously with the change of the InfoStation. The scenario management is performed by

a dedicated Scenario Manager Agent (SMA) in our middleware architecture. Our aim is to extend and

precise further the existent middleware architecture in order to be able to control the service requests’

execution independently of the environmental (scenario) changes. Here we will consider the necessary

extensions for the control of the device mobility and the corresponding two scenarios - ‘No change’

and ‘Change of InfoStation’. First we will present our proposal for the control of the ‘No change’

scenario. Then we will show that the ‘Change of InfoStation’ scenario could be considered as a

synchronization of two ‘No change’ scenarios. For the control of the ‘No change’ scenario, a Request

Register and a Mobile Device Register are supported in our architecture. In addition, a relationship is

supported between the records in these two registers such that each service request to correspond to a

particular mobile device. The Request Register keeps information about all active requests in the

system. The assumption is that the execution of a service request starts always according to the ‘No

change’ scenario. When a request is accomplished and the result returned to the user, the

corresponding request registration is deleted from the registry. The Mobile Device Register keeps

information about the mobile devices which are currently traced by the middleware within the

InfoStation network. When an unregistered mobile device enters the radio range (service area) of an

InfoStation, it is first registered. Correspondingly, when the device leaves the InfoStation and the

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:527

service request initiated by it is already accomplished, the information about it is deleted from the

registry. However, if the service request is not accomplished yet, the registration of the corresponding

device is not deleted but rather only deactivated. In situations like this, the request execution

continues according to the ‘No change’ scenario, but the control expects possible changes in the

scenario. If in the next moment the mobile device appears within the range of the same InfoStation,

the ‘No change’ scenario remains unchanged. If the device enters the range of another InfoStation,

then the control detects a scenario change and the service execution continues according to a new

scenario (i.e. ‘Change of InfoStation’ scenario). As mentioned above, the ‘Change of InfoStation’

scenario could be presented as a combination of two ‘No change’ scenarios, which, however, are

executed in different InfoStations. Moreover, the two scenarios must be synchronized to each other as

to figure out whether they are two independent ‘No change’ scenarios or a ‘Change of InfoStation’

scenario is taking place (Figure 3).

For the realization of synchronization, we envisage two possible models: • InfoStation-Center based

Synchronization – synchronization is done through the InfoStation Center. In this case, the SMA of

one InfoStation (SMAs) sends to the InfoStation Center a Request Register’s record of the activated

request for mobile device mdn. When mdn enters within the range of another InfoStation ISk, SMAk

sends the device ID to the InfoStation Center, which returns information specifying if the request is

still active and which SMA controls it. Then the two SMA agents agree about the scenario change; •

Mobile-Device based Synchronization – in this model, information related to an active service request

is kept by the PAA operating on the device. When entering the range of ISk, the PAA communicates

with SMAk to come to an agreement about the scenario change.

V. Simulation Environment

A simulation environment is being created for testing the presented middleware. By means of this

environment the middleware’s behavior can be analyzed in the framework of separate experiments.

The simulation system is being developed as a wrapper of the tested middleware, in which the

following activities are carried out: • Preparation and initialization of the experiment. • Activation of

the experiment execution. • Visualization of the middleware’s behavior during the experiment

execution. • Automatic generation of protocols, which may be used for the assessment of the

middleware’s behavior. The simulation environment consists of two main modules: an Experiment

Organizer (EO) and an Experiment Runner (ER), Figure 4. EO is a specialized user interface used for

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:528

the preparation of experiments and presentation of results. Experiments are presented as a

specification; the results are recorded and are available for subsequent analysis. Beside this, some

results may be visualized. ER is an agent-based wrapper of the tested middleware, which controls the

experiment execution/running in accordance with the given specification. The interim results obtained

during a particular experiment are transmitted to EO, where the experiment execution can be

visualized. A generator of protocols has been developed also in EO. The simulation environment can

present all events occurring in the middleware in the form of a log file, e.g. the actual moments when

agents/containers/behaviors are created or removed, communications messages exchanged between

agents, changes in the state of agents/containers/behaviors, etc.

A. Levels The experiments, carried out with the help of this environment, allow research and

analysis of the middleware’s behavior at four levels as described in the following subsections.

1) Scenario level At this level we want to trace the global behavior of the middleware during the

execution of the scenario designated in the experiment. Our particular interest is focused on

the behavior of the resident agents and the process of generation of operational (temporary)

agents, which depend on the changes occurring in the environment. These changes are

specified in the description of the experiment and are simulated during its execution. As a

result of the experiment, the following features of the middleware can be analyzed: • Tracking

the movement of users and the corresponding reaction of the middleware. • Statistics about

generated and removed operational agents. • Starting and completing a communication. • Data

transfer between devices. • Review of agents on each hardware device. 2) Container level At

this level, for each simulated component (InfoStation Center, InfoStation, or mobile device)

the simulation environment shows the active containers living in the middleware. The

following information that characterizes a container could be extracted: the address, the

identifier (identifying the container in the JADE platform [24]), the logical name, the port, the

protocol used for communication, etc. The main container also contains two functional JADE

agents: an Agent Management System (AMS) and a Directory Facilitator (DF). AMS is a

mandatory component of the platform and is responsible for the overall management of its

operation, such as the creation and deletion of agents, overseeing the migration of agents

to/from the platform, etc. DF is an optional component providing yellow-pages services to

other agents [24]. 3) Agent level At this level the simulation environment shows what agents

live in the containers of each InfoStation. The following information characterizing an agent

could be extracted: the name of the class whose instance is this particular agent; the

local/global name for JADE; the state of the agent; the container in which it is located, etc.

Beside this, different characteristics of agents can be visualized, such as the location of the

agent (i.e. on a mobile device, InfoStation, or InfoStation Center), creation of an agent (the

simulation environment catches the exact creation time and visualizes it along with the

location, container, name, state), removal of an agent, etc. At the agent level a serious

consideration is given to the detailed presentation of the states of agents. The agents can be in

one of many states, such as AGENT_STATE_ACTIVE (the agent is in active state, i.e. at the

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:529

moment it carries out its functionality and is not awaiting any events from the JADE

environment), AGENT_STATE_DELETED (the agent is removed, i.e. it has entered into this

state just before its removal by the JADE environment and the release of resources held by it),

AGENT_STATE_IDLE (the agent is in free state, i.e. it has fulfilled the assigned functionality

and now it is waiting), AGENT_STATE_INITIATED (the agent has been just generated),

AGENT_STATE_SUSPENDED (the agent is going into inactive “sleep” state),

AGENT_STATE_TRANSIT (in this state the agent can be moved to another JADE container or

another JADE platform), AGENT_STATE_WAITING (the agent is going into awaiting state),

AGENT_STATE_COPY (the agent is going into state, which allows it to be copied),

AGENT_STATE_GONE (the agent has already moved to another platform or container). This

level collects also information that allows analysis of interactions between agents. The

simulation environment may intercept messages exchanged between different agents. The

information, which may be visualized for each message, includes: the sender, the recipient,

and the contents of the message encoded in ACL. 4) Behavior level The purpose of this level

is to provide opportunities for analysis and assessment of local behavior of individual agents.

The agents maintain their own libraries of different “behaviors”, which could change

depending on the environment. The simulation environment obtains the following information

during the process of operation of the observed agents: the name of the behavior, the name of

the class whose instance is this behavior, the type of behavior (simple or complex) and other

behaviors contained in the current behavior (for complex behaviors only). At this level the

simulation environment can visualize the following characteristics of each behavior: the

behavior’s affiliation to an agent, the creation or addition of behavior, the removal of

behavior, etc. Moreover the simulation environment can distinguish the following states of

each behavior: STATE_READY (this state shows that the behavior is ready for execution),

STATE_BLOCKED (the behavior execution has stopped for some reason, e.g. waiting for a

message to be received, input/output operation, etc.), STATE_RUNNING (the behavior is

currently executed). B. Implementation This subsection presents in detail the architecture and

implementation of the Experiment Runner (ER). ER has an agent-based architecture (Figure

5), implemented by means of JADE, which allows smooth integration of the middleware. ER

consists of the following agents: • Simulation Controller – the desired configuration of the

InfoStation (IS) network is simulated with the help of this agent. It is the central coordinator

of each experiment that is currently running. This agent issues commands for the creation or

removal of simulated InfoStations and mobile platforms, defines waiting intervals and the

sequence of interaction between simulated mobile and IS platforms. This agent is also an

interpreter to a specialized script language that describes the desired experiment. Currently we

are studying the possibilities for using the Interval Temporal Logics [25] and its interpreter

Tempura [26] for describing the experiments. • SIS Handler – this agent controls a separate

Simulated InfoStation (SIS) platform. Depending on the purpose of the experiment and on

the commands received from the Simulation Controller, it generates different commands

addressed to the managed SIS and received by the corresponding Spy agent. The SIS

Handler takes care of the creation and removal of the specific SIS, by setting the relevant

parameters needed for the operation of the JADE platform and the desirable initialization of

the Spy agent. • Spy Agent – the role of this agent is to execute the commands issued by the

Simulation Controller agent on the SIS platform. In addition it provides feedback to the

simulation environment on the events that have occurred in the SIS platform. • SMD

Handler – this agent controls the simulated mobile device (SMD) in a similar way as the SIS

Handler controls the SIS. He interprets the commands received from the Simulation

Controller agent, processes them and submits corresponding commands to the simulated

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:530

PAA. The SMD Handler takes care of the creation and removal of the Simulated Mobile

Device platform and its desired initialization. • Simulated PAA – this agent plays the role of

a user’s personal agent; it simulates the user actions based on the commands it receives from

the SMD Handler. It also provides feedback by reporting on the events occurring in the

simulated mobile device platform and on the exchanged messages. Another task of its own is

to connect to the various SIS and to issue requests for execution of services.

Figure 5. The architecture of the Experiment Runner (ER)

The ER’s agents are deployed on the following platforms: • The Simulation Environment

Manager is a JADE platform, on which the Simulation Controller and the Handler agents

live. It serves as a central console for the control of experiments. Work with the environment

and visualization of the processes is carried out through a specialized graphical user interface

(GUI) used by the administrator of experiments. By using this interface, the administrator of

the simulation is able to issue commands to the controller, to start and stop experiments, to

monitor the current status of the environment and the front conditions in the form of a log file.

• The Simulated InfoStation Platform is a JADE platform on which the unmodified agents

of the standard middleware are located. The only addition is the presence of the Spy agent,

which provides a feedback to the controller. The SISs provide the same conditions for the

operation of middleware as the real InfoStations, with only one difference that all of them are

deployed on the same computer. • The Simulated Mobile Device Platform is a JADE

platform, on which the simulated personal assistant is operating. This platform represents the

mobile device of a single user.

B. Spy agents The AMS agent on each JADE platform offers the possibility to other agents to

subscribe for events occurring in the environment. Based on this possibility, in each simulated

InfoStation a Spy agent is created which to detect the changes in the various JADE platforms

and to send relevant information to the corresponding platform handler of the simulation

environment. The handler in turn may forward this information to the simulation manager for

visualization and further processing. Spy agents can subscribe to the following events:

ADDED_CONTAINER, REMOVED_CONTAINER, BORN_AGENT, DEAD_AGENT,

MOVED_AGENT, CHANGED_AGENT_STATE, ADDED_BEHAVIOR,

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:531

REMOVED_BEHAVIOR, CHANGED_BEHAVIOR_STATE, SENT_MESSAGE,

RECEIVED_MESSAGE, POSTED_MESSAGE, CHANGED_AGENT_STATE. In order to be

able to receive information about these events, each Spy agent must engage in

communication with the AMS agent using the ontologies provided by JADE (i.e. the JADE-

Agent-Management-ontology, Introspection-ontology, and FIPA-Management-ontology). A

Spy agent may be configured to provide snooping on a specific group of agents. Information

collected by the Spy agent could be easily filtered out for subsequent visualization, e.g. to

display only that part which is of interest.

VI. CONCLUSION

This paper has presented an OMG’s MDA-based approach for the development of a service-oriented

and agent-based middleware architecture supporting flexible and adaptable, scenario-based, context-

aware provision of m-Learning services within an InfoStation environment. To achieve context-

awareness, the middleware is able to identify/detect the changes occurring in the environment and

adapt its behavior accordingly. Considering the system development as a process of iterations, our

approach provides an extensive ability to examine different development aspects and extend the

system architecture step by step. The first two iterations, namely the base middleware architecture and

the scenario-based management, have been described in more detail. A simulation environment used

for testing the architecture has been also presented. The presented middleware architecture is

implemented by means of the JADE framework [24]. Currently we are looking for a suitable way for

formalization of the scenario presentation as to allow the Scenario Manager Agent (SMA) to

successfully identify different scenarios executed (or changed) during the run-time. The development

of a formal context-awareness model will be based on the Calculus of Context-Aware Ambients

(CCA), [27].

References

[1] M. O’Droma, I. Ganchev. “The Creation of a Ubiquitous Consumer Wireless World through

Strategic ITU-T Standardization”, IEEE Communications Magazine, 48 (10), pp. 158-165, 2010.

[2] P. Barker. “Designing Teaching Webs: Advantages, Problems and Pitfalls”. In Proceedings of the

World Conference on Educational Multimedia, Hypermedia & Telecommunication, Association for

the Advancement of Computing in Education, pp. 54-59, 2001.

[3] H. Maurer, M. Sapper. “E-Learning Has to be Seen as Part of General Knowledge Management”.

In Proceedings of the World Conference on Educational Multimedia, Hypermedia &

Telecommunications, pp. 1249-1253, 2001.

[4] R. H. Frenkiel, T. Imielinski. “InfoStations: The joy of ‘many-time, many-where’

Communications”. WINLAB Technical Report TR-119. Rutgers University, New Jersey, USA, 1996.

[5] J-W. Chang, H-J. Lee. “Context-Aware Architecture for Intelligent Application Services in

Ubiquitous Computing”. In Proceedings of the International Conference on Semantic Computing, pp.

275-281, 2007.

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:532

[6] E. Goh, et al. “A Context-Aware Architecture for Smart Space Environment”. In Proceedings of

the International Conference on Multimedia and Ubiquitous Engineering (MUE’07), pp. 908-913,

2007.

[7] H. L. Chen. “An Intelligent Broker Architecture for Pervasive Context-Aware Systems”. PhD

dissertation, University of Maryland, USA, 2004.

[8] Z. Qingsheng, et al. “Research on Context-Aware Architecture for Personal Information Privacy

Protection”, Cybernetics, pp. 3912-3916, 2007.

[9] R. Capilla. “Context-aware Architectures for Building Service-Oriented Systems”. In Proceedings

of the Conference on Software Maintenance and Reengineering (CSMR’06), pp. 300-303, 2006.

[10] R. Schmohl, U. Baumgarten. “A Generalized Context-aware Architecture in Heterogeneous

Mobile Computing Environments”. In Proceedings of the Fourth International Conference on

Wireless and Mobile Communications, pp. 118-124, 2008.

[11] FIPA Agent Communication Language, http://www.fipa.org/repository/aclspecs.html. 2002.

[12] A. K. Dey, G. D. Abowd. “Towards a better understanding of context and context-awareness”. In

Proceedings of the Workshop on the What, Who, Where, When and How of Context-Awareness, pp.

x.1-x.12, 2000.

[13] IMS Abstract Framework: White Paper v1.0,

http://www.imsglobal.org/af/afv1p0/imsafwhitepaperv1 p0.html. 2003.

[14] S. Stoyanov, et al. “An Approach for the Development of InfoStation-Based eLearning

Architectures”, Comptes Rendus de l’Académie bulgare des Sciences, 61 (9), pp. 1189-1198, 2008.

[15] I. Ganchev, et al. “InfoStation-Based University Campus System Supporting Intelligent Mobile

Services”, Journal of Computers, 2 (3), pp. 21-33. 2007.

[16] I. Ganchev, et al. “Adaptable InfoStation-based mLecture Service Provision within a University

Campus”. In Proceedings of the 7th IEEE International Conference on Advanced Learning

Technologies (ICALT’07), pp. 165-169, 2007.

[17] OMG Model Driven Architecture, Guide Version 1.0.1, http://www.omg.org/cgi-

bin/doc?omg/03-06-01. 2003.

[18] I. Jacobson, et al. The Unified Software Development Process. Addison-Wesley. 1999.

[19] I. Ganchev, et al. “InfoStation-Based Adaptable Provision of M-Learning Services: Main

Scenarios”, International Journal "Information Technologies and Knowledge", Vol. 2, pp. 475-482,

2008.

[20] I. Ganchev, et al. “InfoStation-based mLearning System Architectures: Some Development

Aspects”. In Proceedings of the 8th IEEE International Conference on Advanced Learning

Technologies (ICALT’08), pp. 504-505, 2008.

[21] S. Stoyanov, et al. “Multi-Agent Architecture for Context-Aware mLearning Provision via

InfoStations”. In Proceedings of the International Workshop on Context-Aware Mobile Learning, pp.

549-552, 2008.

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:533

[22] OWL-S: Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/. 2004.

[23] I. Ganchev, et al. “Communications Scenarios for InfoStation-Based Adaptable Provision of M-

Learning Services”. In Proceedings of the 2nd International Conference “Modern (e-)Learning”, pp.

98-104, 2007.

[24] JADE 3.7: Java Agent Development Framework, http://jade.tilab.com/. 2009.

[25] B. Moszkowski. Executing temporal logic programs. Cambridge University Press, Cambridge,

1986.

[26] Tempura. © STRL 1996-2010. http://www.cse.dmu.ac.uk/STRL/ITL/itlhomepagese6. html.

[27] F. Siewe, et al. “CCA: a Calculus of Context-aware Ambients”. In Proceedings of 2009

International Conference on Advanced Information Networking and Applications Workshops, pp.

972-977, 2009.

International Journal of Management, Technology And Engineering

Volume 8, Issue V, MAY/2018

ISSN NO : 2249-7455

Page No:534

