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Abstract: Due to the efficiency of learning relationships and complex structures hidden in data, graph-oriented methods have been 
widely investigated and achieve promising performance. Generally, in the field of multi-view learning, these algorithms construct 
informative graph for each view, on which the following clustering or classification procedure are based. However, in many real 
world dataset, original data always contain noise and outlying entries that result in unreliable and inaccurate graphs, which cannot 
be ameliorated in the previous methods. In this paper, we propose a novel multi-view learning model which performs 
clustering/semi-supervised classification and local structure learning simultaneously. The obtained optimal graph can be 
partitioned into specific clusters directly. Moreover, our model can allocate ideal weight for each view automatically without 
additional weight and penalty parameters. An efficient algorithm is proposed to optimize this model. Extensive experimental 
results on different real-world datasets show that the proposed model outperforms other state-of-the-art multi-view algorithms. 
 
Index Terms: Auto-Weight Learning, Multi-view Clustering, Semi-supervised Classification. 
 
I. INTRODUCTION 
 
With the development of technology, the rate of gathering and 
accumulating information has reached an unprecedented level. 
Numerous data that contain heterogeneous features 
representing objects from different views have arisen in many 
scientific fields, such as computer vision, genetics, data mining, 
pattern recognition, etc. For example, in visual data, an image 
could be represented by different descriptors, such as SIFT [1], 
HOG [2], GIST [3], LBP [4], CENTRIST [5], Colour Moment 
[6]; in biological data, each human gene can be measured by 
gene expression, Array-comparative genomic hybridization 
(aCGH), Single-nucleotide polymorphism(SNP) and 
methylation; for a specific scientific paper, its keywords and 
citations can be regarded as two separate views. It might be 
satisfying for an individual view of data to accomplish some 
work, such as clustering, classification, regression, but methods 
that properly combine many views which contain different 
fractional information will improve the final performance. 
Numerous multi-view learning approaches have been proposed 
in the literature. 
 
In semi-supervised learning domain [7], [8], Co-training [9] is 
a representative paradigm. It firstly trains two classifiers with 
labeled data, and classifies the unlabeled data separately. Next 
some predicted data that are of most confidence are added to 
the other classifier’s training set, then the procedure repeats. 
[10] proposed an alignment-based semi-supervised learning 
model to classify gene expression data samples by seeking an 
optimal alignment between different samples’ probe series. 
 
In unsupervised learning domain, multi-view learning methods 
could be divided into three main categories: tensor-based 
methods, subspace-based methods, and graph-based methods. 
Tensor-based methods are powerful to analyze multi-view 
data’s latent pattern. They model multi-view data as a tensor 
and discover latent pattern hidden in multi-view data, each 
view can be seen as a slice of the tensor. It has been 
successfully applied to many domains such as data mining, web 
search, image recognition and scientific computing [11], [12], 

[13], [14], [15]. Subspace-based approaches are based on the 
assumption that the views are generated from a single latent 
source, and the variation within the views is independent with 
such latent source. Graph-based methods have been widely 
investigated in many research and bring many state-of-the-art 
multi-view clustering methods. 
 
II. RELATED WORK 
 

A. semi-supervised classification 
 
Under the manifold assumption, graph-based methods regard 
labeled and unlabeled examples as vertices of a graph and 
utilize edges to propagate information from labeled ones to 
unlabeled ones. [16] introduced an adaptive multi-modal 
semisupervised classification (AMMSS) algorithm which 
considers each type of feature as one modality, it learns a 
shared class indicator matrix and weights for different 
modalities. [17] use sparse weights to linearly combine 
different graphs to implement label propagation (SMGI). 
Multiple kernel learning methods are naturally combined with 
multi-view data. [18] learned a kernel matrix by solving the 
semidefine programming problem; [19] formulated the multiple 
kernel learning as an efficient semi-infinite linear program; 
[20] proposed a new kernel fusion scheme by optimizing the 
L2-norm of multiple kernels in bioinformatics.The unknown-
sample-oriented methods are really needed in real world 
applications. Based on cotraining method, [21] proposed a co-
regularization approach to learn a multi-view classifier from 
partially labeled data based on the view consensus. A similar 
approach investigating a semi-supervised least squares 
regression algorithm has been proposed in [22]. This kind of 
methods first train multiple classifiers for different type 
features, and then maximize the consistency among all of the 
views by punishing the disagreement among unlabeled data. 
 
B. clustering 
 
In higher-order data sets, multi-linear structures can be 
captured by tensor decompositions for tensors are higherorder 
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generalizations of matrices. Liu et al. [23] proposed a tensor-
based multi-view clustering framework, in which two new 
formulations are developed: modeling the clustering work 
based on the integration of the Frobenius-norm objective 
function, or based on matrix integration in the Frobenius-norm 
objective function. Selee et al. [24] introduce a new tensor 
decomposition called Implicit Slice Canonical Decomposition 
(IMSCAND) in which each similarity is stored as a slice in a 
tensor. In [25], Cao et al. discovery a lower-rank approximation 
of the original tensor data though a `1-norm optimization 
function and then compute high-order singular value 
decomposition of such approximate tensor to obtain the final 
clustering results. However, the tensor factorization methods 
emphasize the consistence eigenvectors across different views, 
following by K-means [26] step on eigenvectors, the final 
clustering labels consistence through different views cannot be 
ensured. 
 
Subspace-based methods are often optimized by learning to 
discriminate each view with the shared variable independently 
and then updating the parameters for the shared space. [27] 
proposed a convex formulation of multi-view subspace 
learning method which can be solved efficiently. [28] applied 
largemargin principle to learn a latent space and show the 
better results. In order to address insufficiency in each 
individual view, [29] discovered a latent intact representation 
of the data and integrate the encoded complementary 
information. Cao et al. [30] proposed a multi-view clustering 
framework utilizing the Hilbert Schmidt Independence 
Criterion (HSIC) as a diversity term to ensure the 
complementarity of different views. Gao et al. proposed a 
multi-modal subspace clustering model that perform subspace 
clustering on different modality respectively and then unify 
them. Chaudhuri et al. [31] proposed multiview clustering 
method via Canonical Correlation Analysis (CCA), it computes 
two sets of variables and maximizes the correlation between 
them in the embedded space, but it only captures the pairwise 
correlations between different views, the high order 
correlations underlying the multiple views are ignored. 
 
Graph-based methods are pretty conspicuous for efficiency and 
excellent clustering performance [32], [33], [34]. Kumar et al. 
[35] proposed a co-regularized approach for multi-view 
spectral clustering in which they co-regularize the clustering 
hypotheses to make different graphs agree with each other. Cai 
et al. [36] proposed multi-modal spectral clustering (MMSC) 
algorithm to integrate heterogeneous image feature, it learns a 
commonly shared Laplacian matrix by unifying different 
modals and add a non-negative relaxation to improve the 
robustness of image clustering. Li et al. [37] proposed a new 
large-scale multi-view spectral approach (MVSC) based on 
bipartite graph, it’s computational complexity is nearly closed 
to linear to the number of data points. However,as previously 
mentioned, almost all of these methods have at least two 
problems, i.e. unreliable similarity matrix and improper 
neighbor assignment. These problems make the similarity 
matrix can’t be fully relied, and eventually lead to suboptimal 
result. 
 
Although graph-based multi-view learning methods achieve 
state-of-the-art performance, there still exist some limits. For 
one thing, such methods conduct the following procedure base 
on the constructed similarity matrix from original data but 
rarely modify it. Real world datasets always contain noise and 

outlying entries that result in the unreliable similarity matrix 
which will impair the finally performance. For another, those 
methods combining different views often have additional 
weight parameters to set, which is unsatisfactory especially in 
unsupervised clustering task. In this paper, we propose an auto-
weighted graph-based multi-view learning approach, It is 
worthwhile to summarized the main contributions of this paper 
as follows: 
1. There is no explicit weight parameter for each view, our 

approach can learn the weight factors automatically after 
finite iterations. It’s nearly free of parameter so that be 
more practical to deal with real world application. 

2. The proposed approach performs multi-view 
clustering/semi-supervised classification and local 
structure learning simultaneously. It adaptively learns local 
manifold structure, thus can update the graph to the ideal 
one for clustering. 

3. A reasonable constraint is introduced to the approach. The 
similarity matrix obtained by local structure can be more 
accurate when we constrain similarity matrix to make it 
contain exact c connected components. 

4. Comprehensive experiments on several real-world data 
sets show the effectiveness of the proposed approach, and 
demonstrate the advantage over other state-of-theart 
methods. 

 
The rest of the paper is organized as follows. In Section III, we 
will propose the Multi-view learning with adaptive neighbors 
(MLAN) framework. In Section IV, we give an efficient 
algorithm to tackle the problem and some analysis of the 
algorithm. In Section V, we perform sound experiments on 
some state-of-the-art methods. At last, the conclusions and 
future work are presented in Section VI. 
 
Notations are summarized here throughout the paper. All the 
matrices are written as uppercase. For a matrix M ∈ Rn×d, the i-
th row and the (ij)-th element of M are denoted by mi and mij , 
respectively. The transpose of matrix M is denoted by MT. The 
trace of matrix M is denoted by Tr(M). The `2-norm of vector v 
is denoted by kvk2. 1 denotes a column vector with all the 
elements as one, and the identity matrix is denoted by I. x and 
σ(x) denote the average value and standard deviation of vector 
x, respectively. 
 
III. METHODOLOGY 
 
In this section, we will first introduce the assignment of 
adaptive neighbors; optimal similarity matrix can be directly 
partitioned into several cluster whose number is just equal to 
the number of data class, without K-means procedure that other 
spectral methods adopt. Then we address the issue of acquiring 
optimal linear combination of multiple graphs, the weight 
coefficient and corresponding penalty parameter can all be 
omitted. 
 
A. Adaptive Local Structure Learning 
 
One of the important factors of the graph-based methods’ 
success is the preserving local manifold structure [38], [39], 
[40], high-dimensional data is considered to contain low 
dimensional manifold structure, so the obtained similarity 
matrix is crucial to the ultimate performance. Given a set of 
data points {x1,x2,··· ,xn}, denote data matrix X ∈ Rn×d, where n 
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is the number of data points and d is the dimension of features, 
we adopt the data preprocessing proposed in [41]. In details, xi 

← (xi −x))/σ(x). For each data point xi, it belongs to one of the c 
classes, and can be connected by all the data points with the 
probability sij [42], and such probability can be seen as the 
similarity between them. Closer samples should have larger 
probability, thus sij has the negative correlation with the 
distance between xi and xj. The determination of probability sij 

can be seen as solving following problem: 

(1) 
Where si is a vector with j-th element as sij in similarity matrix 
S. The second item is added for the consideration that there 
would be a trivial solution where only the nearest data point to 
the xi is assigned probability 1 and all the other points’ 
similarity would be 0 without such penalty item. In spectral 

analysis,  is called Laplacian matrix, 
where the degree matrix DS in S ∈ Rn×n is the diagonal matrix 
whose i-th diagonal element is P

j (sij + sji)/2. Given the class 
indicator matrix F = [f1,··· ,fn], classical spectral clustering can 
be written as 

   (2) 
The ideal neighbor assignment is that the data has exact c 
connected components for the clustering task which aims to 
partition the data into c clusters. Usually the neighbor 
assignment with Eq. (1) cannot reach the ideal case for any 
value of α. Upon most occasions, all the samples are connected 
as just one connected component. For the sake of achieving 
such goal, the probabilities sij in the Eq. (1) should be 
constrained so that the neighbor assignment becomes an 
adaptive process. It seems an impossible goal since such kind 
of structured constraint on the similarity matrix S is 
fundamental but also very difficult to handle. Nevertheless, we 
introduce a reasonable rank constraint to achieve this goal 
inspired by the important property of Laplacian matrix [43], 
[44]: 
Theorem 1. The multiplicity c of the eigenvalue 0 of the 
Laplacian matrix LS (nonnegative) is equal to the number of 
connected components in the graph with the similarity matrix 
S. 
In view of the above consideration, we add a rank constrain to 

the LS in problem 1 according to the Theorem 1:

 
We assign adaptive neighbors to each of samples, which means 
that the similarity between data points will change, so 
similarity matrix S will be modified until it contains exact c 
connected component. Namely, not only the indicator matrix F 
can be learned, different from the traditional spectral clustering 
methods, our model can also learn similarity matrix S 
simultaneously. The learned S can be used for clustering 
directly according to Tarjan’s strongly connected components 
algorithm [45]. 
 
B. Multi-view Data Fusion 
 

For multi-view data, denote  be the data matrix 
of each view. Xv 

∈ Rn×d , where n is the number of data and dv is 

the feature dimension of the v-th view. As for graph-based 
methods, each view can construct similarity graph and 
maximize the performance quality on its own. In the context of 
multi-view clustering, there is an inherent problem that all 
methods have to deal with elaborately: when maximizing the 
within-view clustering quality, the clustering consistency 
across different views should be taken into consideration. The 
rough way that combining multiple views directly through 
similarity matrix addition or feature concatenation would not 
help improve the clustering performance, for fallible similarity 
matrix could lead to suboptimal result. A more reasonable 
manner is to integrate these views with suitable weights  
wv(v = 1,··· ,V ), and an extra regularization parameter γ is 
needed to keep weights distribution smooth: 

 
 (4) For unsupervised learning methods, the less parameter to 
be set, the strong robustness they possess. On the other hand, 
since parameters can be searched in a large range, methods 
with parameters like the above form often show better result 
than parameter-free methods. It’s really elusive to pursue good 
performance while rely less on parameter searching. However, 
we will propose one to alleviate such challenging problem in 
the next section. 
 
In our previous work [46], we have adopted the root function to 
integrate different graphs. One can ask what if adopting other 
functions. In this paper, we explore a series of exponential 
functions and propose a new multi-view learning with adaptive 
neighbor’s method as the following form: 
 

 
 

Where each view shares the same similarity matrix, thus the 
goal of assigning each data point to the most suitable cluster in 
each view and ensuring clustering consistency across views is 
achieved. With the change of the value of p(0 < p <2), a series 
of exponential function could be utilized. There is no weight 
hyper parameter explicitly defined in our model. The Lagrange 
function of Eq. (5) can be written as 
 

(6) 
where Λ is the Lagrange multiplier, G(Λ,S) is the formalized 
term derived from constraints. Taking the derivative of Eq. (6) 
w.r.t S and setting the derivative to zero, we have 
 

    (7) 
Where 

   (8) 
 
We can see that wv is dependent on the target variable S, so that 
Eq. (7) cannot be directly solved. But if wv is set to be 
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stationary, Eq. (7) can be considered accounting for following 
problem 

 
Under the assumption that wv is stationary, the Lagrange 
function of Eq. (5) also apply to Eq. (9), if we calculate S from 
Eq. (9), the value of wv can be updated correspondingly, which 
inspires us to optimize Eq. (5) in an alternative way. After 
optimization, S tune to be Sb, according to Eq. (7), Sb is as least 
a local optimal solution to problem (5). Similarly, wv tune to be

, and they are exactly the learned weights which linearly 
combining different graphs. 
 
IV. OPTIMIZATION ALGORITHM 
 
To solve the challenging problem (5), we should solve problem 
(9) iteratively. In the iterative procedure, parameters are 
updated one by one. The specific parameter updated in the last 
step could be seen as a constant during current step. 
 
A. Clustering 
 

Denote σi(LS) is the i-th smallest eigenvalue of LS, because LS is 
positive semi-definite, σi(LS) ≥ 0. So the constraint rank (LS) = 

n−c will be ensured if . According to Ky 
Fan’s Theorem [47],  
 
We have 

(10) 
Then problem (9) is equivalent to the following problem  
 

 
where λ is a very large number, the optimal solution to the 

problem (11) will make equation  hold. 
1) Fix S, update wv and F: When S is fixed, we can easily 
calculate the value of wv by Eq. (8). So the first and second item 
of problem (11) could be seen as constant, then it transforms 
into: 

 
The optimal solution F is formed by the c eigenvectors 
corresponding to the c smallest eigenvalues of LS. 
 

 
 
 
 
The intermediate variable α can be determined using the 
number of adaptive neighbours, by saying adaptive, we mean 
that the k nearest neighbours to any data point xi are not steady, 
they change in every iteration since the weighted distance dx

ij 

between every pair of xi and xj is updated. The determination of 
the α value will be described in the subsection IV-C. 
 
B. Semi-supervised Classification 
 
Denote l and u are the number of labeled and unlabeled points. 
Denote Yl = [y1,··· ,yl]T, where yi ∈ Rc×1 is the known indicator 
vector for the i-th sample, yi is one-hot and the element yij = 1 
means that the i-th sample belongs to the j-th class. Without 
loss of generality, we rearrange all the points and let the front l 
points be labeled. We split LS and F into blocks, so they could 

be expressed respectively as LS =  and F = [Fl;Fu], Fl 

= Yl. The optimization procedure is just the same as clustering 
depicted above, the only difference is updating the class 
indicator matrix F. When λ is a very large number, problem (9) 
is equivalent to the following problem 
 
 

 
It could be written as 

(18) 
According to the [48], the optimal solution to problem (18) can 
be calculated as 

(19) 
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After iteration, the final single class label could be assigned to 
unlabeled data points by following decision function 

 
By iteratively solving problem (9), the final S and F in the 
objective function Eq. (5) can be obtained and could be used 
for clustering and classification respectively. The Algorithm is 
summarized in Alg. 1. 
 
C. Determine α using Adaptive Neighbors 
 

The value of regularization parameter α could be from zero to 
infinite, it’s difficult to tune in experiment. Let us recall the 
original intention of introducing parameter α. In problem (1), it 
determines number of the neighbor to data pointxi: neighbor 
number will be one if α equal to zero, n − 1 if α becomes 
infinite. We assign k nearest neighbors to each point, for any xi, 
the Lagrangian Function of problem (16) is: 

 
 
Where di1,di2,··· ,din are sorted in ascending order. Hence, to 
make most of si has exact k non-zeros elements, we let αi  

 

 
 

Equal to the right item and set the final α be the average of 
them: 
 

(24) 
 
So α can be determined using the number of adaptive 
neighbors, by saying adaptive, we mean that the k nearest 
neighbors to any data point xi are not steady, they change in 
every iteration since the weighted distance dx

ij between every 
pair of xi and xj is updated. By iteratively solving problem (9), 
the final S and F in the objective function Eq. (5) can be 
obtained and could be used for clustering and classification 
respectively. The Algorithm is summarized in Alg. 1. 
 
D. Convergence Analysis 
 

The proposed algorithm can find a local optimal solution, to 
prove its convergence, we need to utilize the lemma introduce 
by [50], [51]: Lemma 1 For any positive real number a and b, 
the following inequality holds: 
 

 (25) 
 
Theorem 2. In Alg. 1, updated S will decrease the objective 
value of problem (5) until converge , 
 
Proof. Suppose the updated S is Se in each iteration, it’s easy to 
know that: 
 

 (26) 
 
According to Lemma 1, we have 
 

 
 
(27) Sum over Eq. (26) and Eq. (27) in the two sides, we arrive 
at: 
 

(28) 
 
Which completes the prove.  
 
E. Connected to Spectral Clustering 
 
Given a graph with the similarity matrix S, spectral clustering 
is to solve the problem 2, usually, the obtained F cannot be 
directly used for clustering since the graph with S does not has 
exact c connected components. K-means or other discretization 
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procedures should be performed on F to obtain the final 
clustering results [52]. In the convergence of Algorithm 1, we 
also obtain an optimal solution F to the problem 2, the 
difference is that the similarity S is also learned by the 
algorithm. Thanks to the constraint rank(LS) = n −c, the graph 
with the learned S will has exact c connected components. The 
proposed algorithm learns the similarity matrix S and the 
indicator matrix F simultaneously, while traditional spectral 
clustering only learns the F. Although the computational 
burden maybe increase O(n2d + tcn2), where t is the number of 
iteration steps, our new algorithm could achieve better 
performance since the improvement of the similarity matrix. 
The future work could be making this technique applied on 
very large-scale datasets. 
 
V. EXPERIMENT 
 
Since our MLAN is kind of graph-based learning model, we 
will perform the proposed methods on four benchmark data 
sets, compared with other related graph based state-of-theart 
multi-view clustering and semi-supervised classification 
methods. 
 
 
 
A. Data Set Descriptions 
 
MSRC-v1 data set contain 240 images in 8 class as a whole. 
Following [36], we select 7 classes composed of tree, building, 
airplane, cow, face, car, bicycle and each class has 30 images. 
We extract three visual features from each image: colour 
moment (CM) with dimension 24, GIST with 512 dimension, 
CENTRIST feature with 254 dimension, and local binary 
pattern (LBP) with 256 dimension. 
 
Handwritten numerals (HW)data set is comprised of 2,000 
digital images, 200 images for each class from 0 to 9. There are 
Six public features are available: 76 Fourier coefficients of the 
character shapes (FOU), 216 profile correlations (FAC), 64 
Karhunen-love coefficients (KAR), 240 pixel averages in 2 × 3 
windows (PIX), 47 Zernike moment (ZER) and 6 
morphological (MOR) features. 
 
Caltech101 is an object recognition data set containing 101 
categories of images. We follow previous work [37] and select 
the widely used 7 classes, i.e. Dolla-Bill, Face, Garfield, 
Motorbikes, Snoopy, Stop-Sign and Windsor-Chair and get 
1474 images. Six features are extracted from all the images: i.e. 
48 dimension Gabor feature, 40 dimension wavelet moments, 
254 dimension CENTRIST feature, 1984 dimension HOG 
feature, 512 dimension GIST feature, and 928 dimension LBP 
feature. 

 
NUS-WIDE is a real-world web image dataset for object 
recognition problem. We select the front 25 from the all 31 
categories in alphabetical order (bear, bird, ... ,tower), and 
choose the first 120 images for each class. Five low-level 
features are extracted to represent each image: 64 color 
histogram, 144 color correlogram, 73 edge direction histogram, 
128 wavelet texture, and 225 block-wise color moment. 
 
B. Evaluation Metric 
 
For classification task, the proportion of correct-classified data 
points, namely accuracy (ACC) is adopted to measure each 
method’s performance; for clustering task, there evaluation 
metric are adopted to measure the performance: accuracy, 
normalized mutual information (NMI), and purity. As to each 
dataset, supposing ground-truth labels µ with c classes and 
clustering result labels ν with cˆ classes. 
Denote µi and νi as the corresponding ground truth label and 
clustering result label of any data sample xi, and δ(x,y) = 1 if x 
= y; δ(x,y) = 0 otherwise. Then ACC is defined as follows: 
 

(29) 
 

Where map(νi) is the best mapping function which uses the 
Kuhn-Munkres algorithms to permute clustering labels to 
match the ground truth labels. A higher NMI indicates a better 
clustering performance. NMI provides sound indication of the 
shared mutual information between a pair of clustering [53]. It 
can be estimated by computing the confusion matrix. 
 

 
 

where n is the total number of data points, nij denotes the 
number of data in cluster i and class j, ni and nj denotes the data 
number belonging to the ground-truth (µi) and clustering 
result(νj) respectively. A larger NMI indicates a better 
clustering performance.  
 
Apart from accuracy and NMI, purity is another popularly used 
evaluation metric. For ground-truth set µ = {µ1,µ2,··· ,µJ} and 
clustering result set ν = {ν1,ν2,··· ,νK}, the purity is computed 
by first assigning each cluster to the class which is the most 
frequent in the cluster, and then counting the number of 
correctly assigned objects 
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Finally dividing by n: 

(31) 
 

Like ACC and NMI evaluation metric, the higher the purity, 
the better clustering performance. 
 
C. Comparison Scheme 
 
We first compare the proposed AWMC approach with the 
single view CAN [42] method, which is exactly the model 
when view number in our approach is set to 1. Then we also 
compare with several state-of-the-art multi-view clustering 
algorithms . The brief introduction and parameter setting of 
these approaches are as follow: 
 
1. Single view Spectral Clustering (SC) [54]: Running 

spectral clustering on each single view as baseline. 
2. Co-trained spectral clustering (CotrainSC) [55]: using co-

training to learn eigenvectors which agree across different 
views, then apply K-means to generate final clustering 
results, it is a parameter-free method. 

3. Co-regularized Spectral Clustering (CoregSC) [35]: it co-
regularize the clustering hypotheses to make different 

4. graphs agree with each other. 
5. Multi-view Spectral Clustering (MVSC) [37]: one of state-

of-the-art methods that is specially powerful in large-scale 
data clustering. 

6. Multi-Modal Spectral Clustering (MMSC) [36]: it learns a 
commonly shared Laplacian matrix by unifying different 
modals and add a non-negative relaxation to improve the 
robustness of image clustering. 

7. Auto-weighted multiple graph learning (AMGL) [39]: One 
parameter-free multi-view learning method base on the 
spectral clustering and could be applied to semisupervised 
clustering task. 

8. Adaptive multi-modal semi-supervised classification 
(AMMSS) [16]: introduced an algorithm which considers 
each type of feature as one modality, it learns a shared 
class indicator matrix and weights for different modalities. 

9. Sparse Multiple Graph Integration (SMGI) [17] use sparse 
weights to linearly combine different graphs to implement 
label propagation . 

10. Multi-view Learning with Adaptive Neighbors (MLAN): 
proposed by this paper, it calculate the weight for each 
view automatically and can optimize the similarity graph 
during clustering step. 
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As to the compared methods, source codes are obtained from 
their authors’ websites, since these state-of-the-art multiview 
clustering algorithms are graph-based, which need to calculate 
Laplacian matrix for each of the view. We utilize both 
normalized Laplacian matrix and non-normalized Laplacian 
matrix to perform the experiments. Such consideration is 
necessary because the experiment results display that in some 
situation, the normalized form show preferable performance 
than the non-normalized form; but in other situation, the 
superior to inferior changes in these two form. We report the 
better result in these two forms of the compared methods. Since 
most of the graph-based methods often need to utilize k-means 

method as the final clustering step, but we know that k-means 
method’s result is heavily depend on the choose of the initial 
centroids, so we perform 50 times experiments for all methods 
on each of data sets. What’s more, in order to make the 
experiments much fair enough, we set the parameters of each 
method just as their authors adopt and report the best results, 
and report the result of MLAN method with p = 1. To all 
dataset, each sample is assigned 9 nearest neighbors to 
construct graph. In terms of semi-supervised classification, 
some we denote φ ( 10%,20%, 30%, 40%) as the proportions of 
the labeled data. 
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D. Performance evaluation 

 
 
Multi-view clustering method achieves better performance than 
the best of single-view clustering method.  
Particularly, the comparison between MLAN and such method 
only using one specific view’s feature is conducted, seen in 
Figure 1. It validates the effectiveness of our MLAN method, 
proving that combing information from different views 
properly can improve the clustering result. Surprisingly, the 
clustering performance of the handwritten numerals dataset is 
better than some other semi-supervised classification methods. 
In addition, we seek the influence of exponential function with 
different parameter p, shown in the Figure 2 and Figure 3. We 
can see that there exist little difference, with the parameter p 
scanned in the whole range, the result keeps high-level 
performance. Besides, with the increasing proportion of labled 
data, the performance of semi supervised classification 
approaches raise. The much label information available, the 
more unlabeled data points will be more classified correctly. 
The performance of the proposed model MLAN exceeds other 
methods in both clustering and classification. 
 
E. Parameter Sensitivity 
 
There is only one parameter λ in our model brought by the 
Laplacian matrix rank constrains. For the sake of simpleness 
and accelerating the convergence procedure, we can initialize λ 
equal to the obtained value of α (or randomly chose from 1 to 
30), and decrease it (λ = λ/2) if the connected components of S 

is greater than class number c or increase it (λ = λ / 2) if smaller 
than c in each iteration. 
 
For other compared methods, we set their parameters to the 
optimal value: CoregSC has the co-regularization parameter λ 
searched from 0 to 0.1 with step 0.01; MVSC has the weights’ 
distribution control parameter r search in logarithm form 
(log10r from 0.1 to 2 with step size 0.2); MMSC has the penalty 
parameter log10α searched from −2 to 2 with step 0.2; AMMSS 
has exactly the same parameter r as MVSC and regularization 
parameter λ in the range from 0 to 1 with step 0.1; SMGI has 
two regularization parameters λ1 and λ2 in the range from 0 to 1 
with step 0.1. 
 
From the table (I), we can see that the proposed MLAN method 
not only achieve excellent result but also be very robust to the 
parameter λ, it nearly can be seen parameterfree approach. By 
contrast, the performance of parameter-free method CotrainSC 
is unsatisfactory, and other state-of-the-art methods are 
sensitive to their hyperparameters, which can be seen from 
Figure 4, Figure 5, and Figure 6. However, the appropriate 
values of input parameters are often unknown for clustering 
and semi-supervised learning task, which highlight the 
superiority of our MLAN method. 
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VI. CONCLUSIONS 
 
In this paper, we introduce a novel multi-view learning model 
named MLAN, which performs clustering/semi supervised 
classification and local structure learning simultaneously. With 
the reasonable rank constrain, the obtained optimal graph can 
be partitioned into specific clusters directly. Due to the 
robustness to the only parameter, MLAN nearly can be seen as 
parameter-free method, which is very commendable, especially 
for unsupervised clustering task. Extensive experimental results 
show that the proposed model achieves superior’s 
performances. 
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