
A SYSTEM FOR PROFILING AND MONITORING DATABASE

ACCESS PATTERNS BY APPLICATION PROGRAMS FOR

ANOMALY DETECTION

NAVYA ALAPATI1

ANJANI VARMA CHINTALAPATI2

MR.ARIF MOHAMMAD ABDUL3

1Btech Student, Dept of CSE, GITAM University, Rudraram Mandal, Sangareddy

district, Patancheru, Hyderabad, Telangana-502329, India.

2Btech Student, Dept of CSE, VNR Vignana Jyothi Institute of Engineering, Vignana

Jyothi Nagar, Nizampet Rd, Pragathi Nagar, Hyderabad, Telangana-500090, India.

3Assistant Professor, Dept of CSE, GITAM University, Rudraram Mandal, Sangareddy

district, Patancheru, Hyderabad, Telangana-502329, India.

ABSTRACT: Data base management systems provide access control systems that enable

database managers (DBAs) to approve application programs access opportunities to data

sources. Though such systems are effective, in method finer-grained gain access to control

device tailored to the semiotics of the data kept in the DMBS is needed as a fabulous defense

mechanism against smart assaulters. Hence, personalized composed applications which

accessibility databases carry out an added layer of access control. For that reason, protecting

a database alone is not nearly enough for such applications, as attackers targeting at taking

information can capitalize on vulnerabilities in the blessed applications as well as make these

applications to issue harmful database inquiries. An accessibility control device can only

prevent application programs from accessing the data to which the programs are not licensed,

yet it is not able to avoid misuse of the data to which application programs are licensed for

accessibility. Hence, we require a mechanism able to find malicious behaviour arising from

formerly accredited applications. In this paper, we provide the design of an anomaly

detection mechanism, DetAnom that aims to fix such issue. Our strategy is based the

evaluation and profiling of the application in order to create a concise depiction of its

communication with the database. Such an account keeps a trademark for every sent question

and likewise the equivalent constraints that the application program need to satisfy to send

the inquiry. Later on, in the detection stage, whenever the application issues an inquiry, a

component catches the query before it reaches the data source as well as validates the

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3289

matching signature as well as restraints against the existing context of the application. If there

is an inequality, the query is marked as anomalous. The major benefit of our anomaly

discovery system is that, in order to build the application profiles, we require neither any

previous understanding of application susceptibilities nor any kind of instance of feasible

attacks. As a result, our mechanism has the ability to secure the data from attacks customized

to data source applications such as code alteration attacks, SQL injections, and likewise from

various other data-centric strikes as well. We have applied our device with a software

program testing technique called concolic screening as well as the PostgreSQL DBMS.

Speculative results reveal that our profiling method is close to exact, needs appropriate

quantity of time, and also the detection system sustains low run-time overhead.

Key Terms: Database, Insider Attacks, Anomaly Detection, Application Profile, SQL

Injection.

I. INTRODUCTION

Data stored in databases is commonly

essential to the company's operations as

well as also sensitive, for example relative

to personal privacy. Consequently,

securing information stored in a database

is an essential requirement. Data should be

protected not just from external assaulters,

however likewise from users within the

organizations [3] A large range of

establishments from government firms

(e.g., armed forces, judiciary etc.) to

business are seeing attacks by experts at a

startling rate. One of the most crucial

purpose of these experts is to either

exfiltrate sensitive data (e.g., military

plans, trade secrets, intellectual property,

etc.) or maliciously changes the

information for deceptiveness purposes or

for attack preparation [1], [8] There are a

number of truths that make the avoidance

of expert assaults much more tough

compared with various other standard

(external) assaults [4] Initially, experts are

allowed to accessibility sources, such as

data and also computer system systems, as

well as services inside the company

networks as they have legitimate

qualifications. Second, the actions of

experts stem at a trusted domain name

within the network, and thus are exempt to

complete safety checks in the same way as

exterior actions are. For instance, there is

commonly no inner firewall program

within the organization network. Third,

experts are commonly very trained

computer system professionals, that have

expertise regarding the interior setup of the

network and the protection and

bookkeeping control deployed.

Consequently, they might be able to

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3290

prevent traditional protection mechanisms.

Shielding information from insider hazards

needs incorporating various strategies. One

crucial such method is stood for by the

accessibility control system that is

implemented as part of the data source

management system code. A gain access

to control system allows one to define

which users/applications can accessibility

which information for which objective. In

addition to the gain access to control

system carried out as part of the DBMS,

applications might likewise execute their

very own "application-level" gain access

to control in order to carry out more

complicated gain access to control plans.

In such situations, accesses by individuals

to the information stored in a database are

mediated by the application programs.

However, whereas the use of DBMS-level

as well as application-level accessibility

control systems provide an initial layer of

defense versus expert dangers, these

mechanisms are unable to safeguard versus

destructive experts that have access to the

applications as well as can thus change the

code to transform the questions provided

to the data source and also modify the

logics of the application-level access

control. Software-based attestation or easy

stability measurement by a relied on

platform component could be used for

identifying any kind of unauthenticated

adjustment to the application resource

code by expert insiders. Nonetheless,

attestation is commonly carried out

throughout the loading of the application's

executable as well as hence it cannot spot

adjustments of program behaviours at run-

time. Consequently, throughout

implementation if a program is endangered

by an insider utilizing known assault

strategies, e.g., barrier overflow [9] or

return-oriented programming attestation

mechanisms cannot discover such harmful

adjustments of behavior in the program.

Likewise a destructive insider may be able

to customize the information used for the

attestation of the target application

program, thus rendering attestation

ineffective. Apart from that, utilizing

simply a simple honesty measurement

strategy is not a feasible service since this

strategy cannot give integrity for self

modifying code which is widely used as

front end data source applications.

II. RELATED WORK

An official framework to categorize

anomaly discovery systems has actually

been suggested by Shu et al. According to

this classification, our recommended

strategy uses a deterministic language

defined on the top of the database

communications to do the detection.

Numerous approaches have actually been

suggested to safeguard databases against

harmful application programs. DIDAFIT is

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3291

an intrusion detection system that works at

the application degree. Like our system,

DIDAFIT works in two stages: training

stage and detection phase. Throughout the

training phase, database logs are evaluated

to create fingerprints of the inquiries found

in the log. Fingerprints are routine

expressions of inquiries with constants in

the IN WHICH stipulation changed by

place-holders that mirror the data kinds of

the constants. During the detection stage,

input queries are examined versus such

finger prints. Queries that match some

expression in the profiles are thought about

benign, and also anomalous or else.

DIDAFIT has nonetheless some major

downsides. First, the system counts just on

logs to develop program profiles. There is

consequently no guarantee that the log

would certainly include all legitimate

inquiries. To address this downside, the

authors recommend a strategy to create

new trademarks from various other

signatures that are similar in all sections as

well as have some predicates in common.

While this option operates in some

instances, the system would not have the

ability to identify questions that do not

show up in the log. One more issue is that

DIDAFIT does not think about the control

flow and also information circulation of

the program, i.e., the formula neither

checks the appropriate order of the queries,

neither the restraints that need to be

confirmed for a question to be executed.

The approaches suggested by Bertino et al.

[5] as well as Valeur et al additionally

evaluate training logs for developing

accounts of questions. As a result they

have the exact same drawbacks pointed out

earlier. These approaches focus on the

discovery of online attacks, like SQL

Injection and Cross-Site Scripting (XSS)

attacks, and also fall short to discover

other assaults carried out via application

programs, e.g., code alteration attacks.

Safeguarding a database can be an uphill

struggle, Paleari et al explained a brand-

new group of assaults which depend on

race problems. Such kind of attacks are

less complicated in internet applications,

where the tools made use of (primarily

PHP and MySQL) provide a poor set of

synchronization primitives however offer a

highly identical setting. For that reason,

when multiple at the same time requests

are implemented, it is feasible to interleave

the SQL queries in such a way that

generates unforeseen habits. Such a sort of

strike may be alleviated by a strategy, like

the one we propose in this paper, which

can impose the appropriate order of the

inquiries. Our previous poster paper [27]

describes some preliminary suggestions to

shield versus data exfiltration with

malicious adjustment of the application

program. However, the approach

recommended in this paper reduces the

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3292

efficiency expenses by allowing the ADE

to simply go across the application account

instead of concretizing of the symbolic

execution tree of the application program.

Such concretization in the discovery

engine results in extra hold-up when

validating a query. On top of that, our

preliminary technique does not cover the

combination of testing-based methods with

program evaluation techniques nor cover

execution and analysis of the

recommended strategy.

III. PROPOSED MODEL

DETANOM ARCHITECTURE: The

system architecture consists of several

components, supporting the two phases of

DetAnom, which we describe in what

follows.

Fig 1: System architecture for profile

creation

Number 1 reveals the components

sustaining the profile production stage and

their interactions. This phase begins by

giving the application program as input to

the concolic implementation module which

first instruments the application. Note that

the concolic execution does not require the

application resource code. The bytecode is

inspected using representation to discover

the branches and track the input resources

to the branch problems. After that, the

application is started inside an

instrumented digital machine which links

the concolic execution engine to the

networks utilized to connect with the

individual. By doing this the concolic

engine can generate input to compel the

implementation of various branches.

Consequently, the concolic

implementation component implements

the instrumented application for a variety

of times with the purpose of exploring as

several execution paths as feasible. Given

that there is no warranty that the

application terminates on each input, the

concolic implementation utilizes a depth

bounded search to restrict the profiling

time. The depth of the search is a

configurable parameter. Each time the

application program concerns a question to

the database, the restriction extractor in the

account home builder component removes

the restrictions that lead the application

program to adhere to the present path.

These constraints compose a part of the

application account. In addition, each

query sent to the data source is also sent to

the account builder component where the

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3293

signature generator sub-module produces

the signature of that query.

Anomaly Detection Component: The

main modules supporting the anomaly

detection phase are: the anomaly detection

engine (ADE), the SQL proxy, the

signature comparator, and the target

database as shown in Figure 2.

Fig 2: System architecture for anomaly

detection

The information to protect is saved in the

target database. We presume that the

database web server is already protected to

the very best of present security modern

technology and can be accessed only

through our proxy. The monitored

application engages with the data source

via SQL questions which are obstructed by

the SQL proxy and also forwarded to the

ADE for anomaly discovery. Additionally,

the instrumented environment collects the

application input and adds it as meta-data

to the inquiry. The ADE additionally

includes the trademark generator sub-

module that produces the trademark of the

received query. Upon getting the inquiry,

the ADE checks whether the present

program inputs please the restraints of

some feasible implementation paths. If the

restraints are completely satisfied, the

trademark comparator contrasts the

trademark of the inquiry connected with

the pleased restraint to that of the received

query. If there is a suit, the query is

thought about legitimate, or else an

anomaly is spotted. This information is

then returned to the proxy, where a

customized logic is utilized to determine

the activities to be executed in order to

take care of the anomaly. Instances of such

activities consist of denying the inquiry,

sending out an alarm system to a security

manager, revoking the application program

consents etc.

ADVERSARY MODEL: We presume

that at run-time the application program

can be tampered and hence end up being

untrusted. As a result, we presume that

while the program is performing, the

program might issue a question that: (a)

has actually never been come across in the

profile production stage, i.e., the question

does not come from the application at all;

(b) belongs to the application yet is not

pertinent to the current execution path; (c)

pertains to the present execution course,

yet the program input variables do not

please that query's corresponding

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3294

restrictions. Every one of these instances

can be easily mapped to well known

protection attacks. In instance (a), an

aggressor may just utilize a network sniffer

or perform a man-in-the-middle attack to

take the qualifications that the application

utilizes to attach to the data source. Once

the qualifications are swiped, the assailant

might use any type of various other client

to connect to the data source, avoid all the

application degree safety checks, as well

as concern inquiries that do not belong to

the application. In case (b), an aggressor

might acquire the qualifications as

described in the previous situation and can

utilize a similar method to tape-record the

queries that the application problems. By

repeating an allowed question the

opponent can go through simpler safety

checks and also therefore can obtain

sensitive data. Let us think that a question

gets only a row of sensitive data after the

application has actually done some sanity

checks on the values used to fetch the row.

An assaulter may replay the query a

number of times, changing only the worths

made use of to filter the lead to order to

retrieve all the data he/she wants. In

instance (c), the aggressor jeopardizes the

application and alters its gain access to

control plan. For instance, most of the

applications add an added layer of safety

and security which requires the user to

offer a pair of username and password.

Typically, such applications recover a data

source table for the given qualifications to

recover the collection of permissions

granted to the customer. Note that this

level of protection is normally applied

outside of the database. All the instances

of the very same application make use of

the same database qualifications for the

connection and deal with the additional

layer of safety and security inside. If an

application is endangered so to return an

effective authentication, on the database

side we see only a sequence of enabled

inquiries for which the constraints might

not be pleased with the program inputs.

We think that every component associated

with the account development stage and

also anomaly discovery stage is relied on.

We likewise think that profiles are kept in

a secure storage and also are not meddled

by an expert or data source administrator.

The concolic implementation takes the

application as input and instruments it to

log each procedure that may impact a

symbolic variable worth or a path problem.

This component then performs the

program concretely with some first default

input. In order to explore other courses, it

takes a look at the branch problems (i.e.,

restraints) along the carried out path, and

also utilizes a constraint solver to find

inputs that would turn around the branch

problems. The execution is duplicated for

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3295

a number of times till all the

implementation courses are checked out or

the depth search limit is reached in all the

explored ones. Taking into consideration

that the goal of our system is to safeguard

a database, we anticipate that the

instrumented application problems

inquiries along a few of these execution

paths. The provided questions are sent to

both the profile contractor and also the

mocked data source. Upon getting a query,

the constraint extractor sub-module in the

profile home builder extracts the restraints

that are prerequisite to carry out that query.

The mocked data source uses the concolic

engine to generate the question results that

are needed to check out more recent

execution paths.

Algorithm 1 Anomaly Detection

1: Input: Application Profile (AP)

2: vp = root of AP

3: while the program is executing do

4: q = issued query

5: ci = input constraints

6: signature generator generates sig(q)

7: found = false

8: for each child vi of vp do

9: if ci is satisfied then

10: signature comparator compares sig(q)

to sig(queryi)

11: if signatures match then

12: response: NOT-ANOMALOUS

13: vp = vi

14: else

15: response: ANOMALOUS

16: end if

17: found = true

18: break

19: end if

20: end for

21: if found == false and vp is an

incomplete node then

22: response: WARNING

23: end if

 24: end while

Simple Detection: Instrumenting all the

circumstances of the application to be

safeguarded is not constantly feasible.

Feasible reasons might relate, however not

limited, to: - time restrictions as the

application might be already deployed on a

great deal of equipments and also upgrade

every one of them may not be simple; -

technical factors as the environment

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3296

utilized may not subject any type of API

for the instrumentation (i.e. JVMs for

mobile phones); - efficiency factors as in

applications with high varieties of

individual interactions, the overhead

introduced by sending out the customer

input may introduce substantial hold-ups.

Consequently we have also developed a

simple variation of our anomaly discovery

strategy which does not need the

instrumentation for the anomaly detection

stage. We describe this strategy as simple

detection, whereas we describe the

previous technique as full detection. Since

the profile creation stage does not

transform, the very same account can be

used for both the straightforward as well as

complete detection stages. The main

difference is that, without getting the

application input during the anomaly

detection, we can validate only that a

permitted sequence of queries is released

however without checking the restrictions.

IV. EXPERIMENTAL

EVALUATION

We have actually examined the efficiency

of our recommended DetAnom system.

Our experiments have actually been

performed on an online equipment running

Ubuntu-14 as operating system, with

10GB of RAM memory and also 4 cpus.

Thinking about the deterministic habits of

our method, as well as thinking about that

in case of a control-flow attack we expect

to find all the queries after the attack to be

flagged as anomalous, we focused the

analysis on the efficiency as well as the

overhead required to send the user input as

well as validate the restraints. Since to the

very best of our knowledge there is no

public offered dataset appropriate for our

requirements, we produced some test

applications. The objective was to examine

DetAnom utilizing applications with

various sizes, in order to examine the

actions in instance of partial accounts.

Gotten by raising complexity; the first 2

usage just binary branches, while the 3rd

has additionally for loops. As we can see

in the 2nd column, the account creation

time boosts very fast. The reason is that in

the most awful instance this moment is

exponential in the variety of branches. A

restriction of the concolic screening tool

we use is that the backtrack support is not

implemented. Consequently each time a

new branch needs to be checked out, a new

execution of the application is needed.

Considering that we produced the test

applications nesting binary branches

equally, profiling an application with

added “if-else” calls for two times the

moment. Including loopholes slows down

a lot more the account creation since, as

described in Area 5, jCute actually unroll

loops that can be seen as a collection of

nested "if" s where every "if", but the last

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3297

one, contains the loop body and also the

following if. To check the applications, a

pseudo random input generator has been

utilized to imitate the individual input.

Booting up the generator with the exact

same seed makes it possible to test the

exact same implementation circulation.

We examined 100 various implementation

streams for each application. For each

execution flow we tape-recorded the

execution time and also the network use of

the application in both a typical

implementation and an implementation

secured by DetAnom. As we can see the

runtime expenses is small and around

20%. We can additionally see that the

ordinary execution time of the longer

application is just few nanoseconds more

than the implementation time of the

smaller one. The reason is that the time

required to begin the JVM is substantially

higher than the moment required sending

out a query

Fig 3: Execution time overhead

Fig 4: Network overhead

Our experiments have actually revealed

some technological restrictions of our

current strategy. In what follows we talk

about such constraints as well as overview

possible options. The profile creation stage

is really sluggish. This is a restriction of

the screening strategy we make use of

which really runs the program as often

times as it is needed to check out the

possible implementation courses. In

addition, the concolic testing device we

made use of, JCute [30], was developed to

compose small unit tests. For that reason it

does not implement any kind of device to

accelerate the evaluation of large

programs. Numerous executions could be

parallelized and distributed on various

equipments; in addition, saving a snapshot

of the execution in order to having the

ability to backtrack without the demand of

reactivating the application from the get go

might result in a big enhancement of the

profile development time. Using a concolic

engine, which sustains backtracking, doing

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3298

photo of the application implementation,

might additionally serve in supporting the

incremental account production. This can

be made use of both to promptly release a

partial account to start safeguarding the

application while constructing a much

more accurate account, or to incrementally

transform the profile to mirror application

updates.

V. CONCLUSION AND

FUTURE WORK

Though accessibility control devices

released in DBMS have the ability to avoid

application programs from accessing the

information for which they are not

licensed, they are incapable to prevent data

abuse triggered by authorized application

programs. In this paper, we have actually

suggested an anomaly discovery

mechanism that has the ability to recognize

anomalous queries resulting from formerly

accredited applications. Our mechanism

builds close to precise account of the

application program, without the need of

its source code, as well as checks at run-

time inbound queries versus that profile.

Along with anomaly discovery, our

DetAnom system is capable of finding any

kind of injections or adjustments to the

SQL queries. We wish to emphasize 2

benefits of our strategy contrasted to other

much more conventional techniques. The

very first is that by using the concolic

testing strategy instead of static analysis

strategies, we can profile the actual

implementation of the code that includes

inquiries carried out by self-modifying or

dynamically downloaded and install code.

The second is that we have the ability to

impose the real order of the questions sent

to the database, unlike conventional SQL

injection discovery techniques which are

unable to identify whether a query is added

or gotten rid of from an application

program. We have applied DetAnom with

JCute and also PostgreSQL which leads to

reduced run-time overhead and also high

accuracy in detecting strange database

accessibilities. We are currently

prolonging our job along a number of

directions. Our existing application of

DetAnom exploits the restraints that JCute

[30] assistances, i.e., arithmetic, pointer, as

well as thread restrictions. We plan to

improve our trademark generation system

by incorporating details concerning

program constants, variables, sensible as

well as relational operators utilized in the

IN WHICH clause of an inquiry as this

information might enhance the precision of

discovery. We likewise plan to improve

the completeness and precision of our

account production device utilizing both

fixed and dynamic evaluation of the

program. In this strategy, we will first

examine the program statically to locate all

the implementation paths which contain

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3299

SQL queries and after that guide the

concolic implementation dynamically to

ensure that it does not leave any courses

unexplored.

VI. REFERENCES

[1] C. Cadar and K. Sen. Symbolic

execution for software testing: Three

decades later. Commun. ACM, 56(2):82–

90, Feb. 2013.

[2] A. Cheung, S. Madden, O. Arden, and

A. C. Myers. Automatic partitioning of

database applications. VLDB Endow.,

5(11):1471– 1482, July 2012.

[3] M. Collins, D. M. Cappelli, T. Caron,

R. F. Trzeciak, and A. P. Moore. Spotlight

on: Programmers as malicious insiders

(updated and revised). Technical report,

Carnegie Mellon University, 2013.

http://resources.sei.cmu.edu/asset

files/WhitePaper/ 2013 019 001

85232.pdf.

[4] C. Cowan, P. Wagle, C. Pu, S. Beattie,

and J. Walpole. Buffer overflows: attacks

and defenses for the vulnerability of the

decade. In DARPA Information

Survivability Conference and Exposition,

2000. DISCEX ’00. Proceedings, volume

2, pages 119–129 vol.2, 2000.

[5] A. Dasgupta, V. Narasayya, and M.

Syamala. A static analysis framework for

database applications. In Proceedings of

the 2009 IEEE International Conference

on Data Engineering, ICDE ’09, pages

1403–1414, Washington, DC, USA, 2009.

IEEE Computer Society.

[6] M. Emmi, R. Majumdar, and K. Sen.

Dynamic test input generation for database

applications. In Proceedings of the 2007

International Symposium on Software

Testing and Analysis, ISSTA ’07, pages

151–162, New York, NY, USA, 2007.

ACM.

[7] D. Gao, M. K. Reiter, and D. Song.

Gray-box extraction of execution graphs

for anomaly detection. In Proceedings of

the 11th ACM Conference on Computer

and Communications Security, CCS ’04,

pages 318–329, New York, NY, USA,

2004. ACM.

[8] J. T. Giffin, S. Jha, and B. P. Miller.

Efficient context-sensitive intrusion

detection. In Proceedings of the 11th

Annual Network and Distributed System

Security Symposium NDSS, 2004.

[9] W. G. Halfond, J. Viegas, and A. Orso.

A classification of sqlinjection attacks and

countermeasures. In Proceedings of the

IEEE International Symposium on Secure

Software Engineering, volume 1, pages

13–15. IEEE, 2006.

 [10] S. R. Hussain, A. M. Sallam, and E.

Bertino. Detanom: Detecting anomalous

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3300

database transactions by insiders. In

Proceedings of the 5th ACM Conference

on Data and Application Security and

Privacy, pages 25–35. ACM, 2015.

[11] A. Balakrishnan and C. Schulze. Code

obfuscation literature survey. CS701

Construction of compilers, 19, 2005.

[12] E. Bertino. Data Protection from

Insider Threats. Synthesis Lectures on

Data Management. Morgan & Claypool

Publishers, San Rafael, 2012.

[13] E. Bertino and G. Ghinita. Towards

mechanisms for detection and prevention

of data exfiltration by insiders: Keynote

talk paper. In Proceedings of the 6th ACM

Symposium on Information, Computer and

Communications Security, ASIACCS ’11,

pages 10–19, New York, NY, USA, 2011.

ACM.

[14] E. Bertino, A. Kamra, and J. P. Early.

Profiling database application to detect sql

injection attacks. In IEEE International

Performance, Computing, and

Communications Conference, IPCCC

2007, pages 449– 458, April 2007.

[15] R. Majumdar and K. Sen. Hybrid

concolic testing. In Proceedings of the

29th International Conference on Software

Engineering, ICSE 2007, pages 416–426,

May 2007.

 Navya Alapati: Btech Student, Dept of

CSE, GITAM University, Rudraram

Mandal, Sangareddy district, Patancheru,

Hyderabad, Telangana-502329, India.

Anjani Varma Chintalapati: Btech

Student, Dept of CSE, VNR Vignana

Jyothi Institute of Engineering, Vignana

Jyothi Nagar, Nizampet Rd, Pragathi

Nagar, Hyderabad, Telangana-500090,

India.

Mr Arif Mohammad Abdul: Assistant

Professor, Dept of CSE, GITAM

University, Rudraram Mandal, Sangareddy

district, Patancheru, Hyderabad,

Telangana-502329, India.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 3301

