Fixed Points of (α, ϕ_K) - Geraghty contractions in metric like spaces

P. H. Krishna

Department of Mathematics, Centurion University of Technology and Management, Andhra Pradesh , INDIA. Email: phk.2003@gmail.com.

P. Mahesh

Department of Mathematics,
Baba Institute of Technology and Sciences,
Visakhapatnam , INDIA.
Email: mahe2vec@gmail.com.

V. Prasad

Department of Mathematics,
Baba Institute of Technology and Sciences,
Visakhapatnam,INDIA.
Email:vangapanduprasad1@gmail.com.

Abstract- In this paper, we define (α, φ_k) - generalized Geraghty contraction maps in metric-like spaces where α is an admissible function and φ is an altering distance function, and prove the existence of fixed points. Our results extend the some of the known results. We provide examples in support of our results.

keywords: Fixed points; metric-like spaces; $(\alpha-\phi_k)$ Geraghty contraction. AMS(2010) Mathematics Subject Classification: 47H10, 54H25.

I. INTRODUCTION

Banach contraction principle is one of the fundamental results in fixed point theory for which several authors generalized and extended it both in terms of considering a more general contraction condition and a more general ambient space. In 2012, Amini-Harindi[1] proved some fixed point results in metric-like spaces. Aydi, Karipinar [2] proved some fixed point results in metric-like spaces with $(\alpha-\Psi)$ contractions. Recently O.Acar and Ishak Altuin [4] proved a fixed point theorem for Ψ k- Geraghty contraction in metric-like spaces. Khan, Swaleh and Sessa [12] studied the existence of fixed points in metric spaces by using altering distance functions.

Definition 1.1 [1]. Let X be a nonempty set. A function $\sigma: X \times X \to [0, \infty)$ is said to be a metric-like space on X if for any x, y in X the following conditions are satisfied:

- (i) $\sigma(x,y) = 0 \Rightarrow x=y$
- (ii) $\sigma(x,y) = \sigma(y,x)$, and
- (iii) $\sigma(x,y) = \sigma(x,z) + \sigma(z,y)$.

The pair (X, σ) is called a metric-like space.

Each metric-like σ on X generates a τ_0 on X which has a base consisting of the family of open σ - balls $B\sigma(x, \varepsilon)$: $x \in X$, $\varepsilon > 0$,

where $B\sigma(x, \varepsilon) = y \in X$: $|\sigma(x, y) - \sigma(x, x)| < \varepsilon$ for all $x \in X$ and $\varepsilon > 0$.

Definition 1.2 [1] (i) A sequence $\{x_n\}$ in a metric-like space (X, σ) converges to a point $x \in X$ if and only if $\sigma(x,x) = \lim_{n \to \infty} \sigma(x,x_n)$.

(ii) A sequence $\{x_n\}$ in a metric-like space (X, σ) is called a Cauchy sequence $\lim_{n,m} \to \infty(x_n, x_m)$ exists (and is finite).

(iii)A metric –like space (X, σ) is said to be complete if every Cauchy sequence $\{x_n\}$ in converges , with respect to τ_p , to a point $x \in X$

such that $\lim_{n\to\infty} \sigma(x,x_n) = \sigma(x,x) = \lim_{n\to\infty} (x_n,x_n)$.

Definition 1.3[1] Let (X, σ) is called a metric-like space. A mapping T: $(X, \sigma) \to (X, \sigma)$ is continuous if for any sequence $\{x_n\}$ in X such that $\sigma(x_n, x) \to \sigma(x, x)$ as $n \to \infty$,

we have $\sigma(Tx_n, Tx) \rightarrow \sigma(Tx, Tx)$ as $n \rightarrow \infty$.

Lemma 1.4 [10]. Let (X, σ) be a metric-like space. Let $\{x_n\}$ be a sequence in X such that $x_n \to x$, where $x \in X$ and $\sigma(x,x) = 0$.

Then for all $y \in X$,

we have $\lim_{n \to \infty} \sigma(x_n, y) = \sigma(x, y)$.

Definition 1.5 ([12]) A function : $R^+ \to R^+$, $R^+ = [0, \infty)$ is said to be an *altering distance function* if the following conditions hold:

- (i) φ is continuous,
- (ii) φ is non-decreasing, and
- (iii) $\varphi(t) = 0$ if and only if t = 0.

In 1973, Geraghty [8] introduced a new contractive mapping in which the contraction constant was replaced by a function having some specific properties taken from the class of functions S, where $S = \{\beta : [0, \infty) \to [0,1)/\beta(t_n) \to 1 \Rightarrow t_n \to 0 \}$

Definition 1.6. [13] Let T: XxX be a self map and α : XxX \rightarrow R be a function . Then T is said to be α – admissible function if $\alpha(x, y) \ge 1$ implies $\alpha(Tx, Ty) \ge 1$.

In 2015 Karipinar. E, Alsulami H.H., Noorwali M.,[11] proved the following Geraghty theorem in metric-like space.

Theorem1.7. [11] . Let (X, σ) be a complete metric — like space—and T: $X \to X$ be a mapping. Suppose that there exists $\beta \in S$ such that $\sigma(Tx, Ty) \leq \beta(\sigma(x, y))\sigma(x, y)$ for all

x, y in X. Then T has a unique point $u \in X$ with $\sigma(u, u) = 0$.

In 2017 Aydi H., Felhi A., and Sahmim S [3] considered a new type of Geraghty contractions in the class of metric-like spaces and proved the existence of fixed points for the following contractive map.

Theorem 1.8. [3] Let (X, σ) be a complete metric-like space and T: $X \to X$ be a mapping. Suppose that there exists $\beta \in S$ such that $\sigma(Tx, Ty) \le \beta(F(x, y))F(x, y)$ for all x, y in X,

where $F(x,y) = \sigma(x, y) + |\sigma(x, Tx) - \sigma(y, Ty)|$. Then T has a unique fixed point $u \in X$ with $\sigma(u, u) = 0$. Now, we define φk - generalized Geraghty contraction in metric-like spaces.

Definition 1.9. Let (X, σ) be a metric-like space and let $T: X \to X$ be a self map. If there exists $\beta \in S$ such that $(\phi(\sigma(Tx, Ty)) \le \beta(\phi(K(x, y)))\phi(K(x, y))$

Where K(x,y)=max $\{ \sigma(x, T(x)), \sigma(y, Ty), \frac{\sigma(x, Tx) + \sigma(y, Ty)}{2}, \sigma(x, y) + |\sigma(x, Tx) - \sigma(y, Ty) \}$

for all x, $y \in X$ then we call T is a φ_k - generalized Geraghty contraction in metric-like spaces.

Now we define (α, φ_k) - generalized Geraghty contraction maps in metric-like spaces where α is an admissible function and φ is an altering distance function.

Definition 1.10. Let (X, σ) be a metric-like space and let $T: X \to X$ be a self map. If there exists $\beta \in S$ such that $\alpha(x, y)$ $(\phi(\sigma(Tx, Ty)) \le \beta(\phi(K(x, y)))\phi(K(x, y))$ Where $K(x, y) = \max\{\sigma(x, T(x)), \sigma(y, Ty), \frac{\sigma(x, Tx) + \sigma(y, Ty)}{2}, \sigma(x, y) + |\sigma(x, Tx) - \sigma(y, Ty)|\}$ for all $x, y \in X$ then we call T is a (α, ϕ_k) - generalized Geraghty contraction in metric-like spaces.

Lemma 1.10. [2] Let (X, d) be metric space. Let $\{x_n\}$ be a sequence in X such that $d(x_{n+1}, x_n) \to 0$ as $n \to \infty$. If $x_n\}$ is not a Cauchy sequence then there exist an $\epsilon > 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with n(k) > m(k) > k and

Volume IX, Issue I, JANUARY/2019

 $d(x_{m(k)}, x_{n(k)}) \ge \epsilon$. For each k > 0, corresponding to m(k), we can choose n(k) to be the smallest integer such that $d(x_{m(k)}, x_{n(k)}) \ge \epsilon$ and $d(x_{m(k)}, x_{n(k)}) \le \epsilon$. It can be shown that the following identities are satisfied.

- (i) $\lim_{k\to\infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$
- (ii) $\lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)+1}) = \varepsilon,$
- (iii) $\lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)}) = \varepsilon,$
- (iv) $\lim_{k\to\infty} d(x_{n(k)}, x_{m(k)+1}) = \varepsilon$.

Now, we prove the existence of fixed points of (α, φ_k) generalized Geraghty contraction maps in metric-like spaces.

2. MAIN RESULTS

Theorem 2.1. Let (X, σ) be a complete metric-like space. Let $T: X \to X$ be a (α, φ_k) generalized Geraghty contraction. Suppose that

- (i) T is α admissible;
- (ii) there exists $x_0 \boxtimes X$ such that $\alpha(x_0, Tx_0) \ge 1$;
 - (ii) T is continuous.

Then there exists a $u \boxtimes X$ such that $\alpha(u; u) = 0$. Assume that in addition that (H1) if $\sigma(x, x) = 0$ for some x in X, then $\alpha(x; x) \ge 1$. Then such u is a fixed point of T.

Proof. Let $x_0 \in X$ be such that $\alpha(x_0, Tx_0) \ge 1$. We define $\{x_n\}$ in X by $x_n = Tx_{n-1}$ for each n.

If $x_n = x_{n+1}$ for some $n \in N$, then $x_n = Tx_n$ and hence x_n is a fixed point of T. Hence, without loss of generality, we assume that $x_n \neq x_{n+1}$ for all $n \in N$.

- (i) Since T is α admissible, we have
- $\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1$ implies $\alpha(Tx_0, Tx_1) = \alpha(x_1, x_2) \ge 1$.

By mathematical induction,

it is easy to see that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$.

We consider

$$\varphi(\sigma(x_{n+1}, x_{n+2})) = \varphi(\sigma(Tx_n, Tx_{n+1}))$$

$$\leq \alpha(x_{n}, x_{n+1}) \varphi(Tx_{n}, Tx_{n+1})
\leq \beta(\varphi(K(x_{n}, x_{n+1})))(\varphi(K(x_{n}, x_{n+1}))$$
(2.1.1)

Now

$$K(x_{n}, x_{n+1}) = \max\{ \sigma(x_{n}, Tx_{n}), \ \sigma(x_{n+1}, Tx_{n+1}), \ \frac{\sigma(x_{n}, Tx_{n}), +\sigma(x_{n+1}, Tx_{n+1})}{2}, \ \sigma(x_{n}, x_{n+1}) + |\sigma(x_{n}, Tx_{n}) - \sigma(x_{n+1}, Tx_{n+1})| \}$$

$$K(x_{n}, x_{n+1}) = \max\{ \sigma(x_{n}, x_{n+1}), \ \sigma(x_{n+1}, x_{n+2}), \ \frac{\sigma(x_{n}, x_{n+1},), + \sigma(x_{n+1}, x_{n+2})}{2}, \ \sigma(x_{n}, x_{n+1}) + | \sigma(x_{n}, x_{n+1}) - \sigma(x_{n+1}, x_{n+2}) | \}$$

Suppose that $\sigma(x_n, x_{n+1}) \leq \sigma(x_{n+1}, x_{n+2})$

$$K(x_n, x_{n+1}) = \max\{\sigma(x_n, x_{n+1}), \ \sigma(x_{n+1}, x_{n+2}), \ \frac{\sigma(x_n, x_{n+1}, x_{n+2})}{2}, \ \sigma(x_n, x_{n+1}) + (\sigma(x_{n+1}, x_{n+2}) - \sigma(x_n, x_{n+1})\}$$

Suppose that $\sigma(x_{n+1}, x_{n+2}) \leq \sigma(x_n, x_{n+1})$

$$K(x_{n}, x_{n+1}) = \max\{ \sigma(x_{n}, x_{n+1}), \ \sigma(x_{n+1}, x_{n+2}), \ \frac{\sigma(x_{n}, x_{n+1}, x_{n+1}) + \sigma(x_{n+1}, x_{n+2})}{2}, \ \sigma(x_{n}, x_{n+1}) + (\sigma(x_{n+1}, x_{n+2}) - \sigma(x_{n}, x_{n+1}) \}$$

$$K(x_n, x_{n+1}) = \max\{ \sigma(x_n, x_{n+1}), \sigma(x_{n+1}, x_{n+2}) \}$$

If
$$\max\{\sigma(x_n, x_{n+1}), \sigma(x_{n+1}, x_{n+2})\} = \sigma(x_{n+1}, x_{n+2})$$

then from (2.1.1), we have

$$\varphi(\sigma(x_{n+1}, x_{n+2})) \le \beta(\varphi(K(x_n, x_{n+1})))(\varphi(K(x_n, x_{n+1})))$$

$$\le \beta(\varphi(K(x_n, x_{n+1})))(\varphi(\sigma(x_n, x_{n+1})))$$

$$< \varphi(\sigma(x_{n+1}, x_{n+2})),$$
 a contradiction.

So that we have max $\{ \sigma(x_n, x_{n+1}), \sigma(x_{n+1}, x_{n+2}) \} = \sigma(x_n, x_{n+1}),$ and hence

$$\varphi(\sigma(x_{n+1}, x_{n+2})) \le \beta(\varphi(K(x_n, x_{n+1})))(\varphi(K(x_n, x_{n+1}))$$

$$< \varphi(\sigma(x_n, x_{n+1}))$$
for all n.

Thus it follows that $\{\varphi(\sigma(x_n,x_{n+1}))\}$ is a decreasing sequence of non negative reals and

$$\lim_{n\to\infty} \varphi(\sigma(x_n,x_{n+1}))$$
 exists and it is r(say). i.e., $\lim_{n\to\infty} \varphi(\sigma(x_n,x_{n+1})) = r \ge 0$.

We now show that r = 0.

If r>0, then from (2.1.1) we have

$$\begin{split} \varphi(\ \sigma(x_{n+1},\ x_{n+2)})) &\leq \ \varphi(\ Tx_n,\ Tx_{n+1)})) \\ &\leq \beta(\varphi(\ K(x_n,\ x_{n+1)})) \ \ \varphi(\ K(x_n,\ x_{n+1)})) \\ &\leq \beta(\varphi(\ K(x_n,\ x_{n+1)})) \ \ \varphi(\ \sigma(x_n,\ x_{n+1)})), \ \text{and hence} \end{split}$$

$$\frac{\varphi(\ \sigma(x_{n+1},\ x_{n+2}))}{\varphi(\ \sigma(x_{n},\ x_{n+1}))} \leq \beta(\varphi(\ K(x_{n},\ x_{n+1})) < 1 \ \text{ for each } n \geq 1.$$

Now on letting $n \to \infty$, we get

$$1 = \lim_{n \to \infty} \frac{\varphi(\sigma(x_{n+1}, x_{n+2}))}{\varphi(\sigma(x_n, x_{n+1}))} \le \lim_{n \to \infty} \beta(\varphi(K(x_n, x_{n+1}))) \le 1$$

So that
$$\beta(\varphi K(x_n, x_{n+1}))) \to 1$$
 as $n \to \infty$.

This implies that
$$\lim_{n\to\infty} (\varphi(K(x_n, x_{n+1}))) = 0$$
.

Since
$$\varphi(\sigma(x_n, x_{n+1})) \le \varphi(K(x_n, x_{n+1}))$$
 for all n, we have

$$\lim_{n\to\infty} \Big(\varphi \big(\sigma(x_n, x_{n+1}) \big) \Big) \leq \lim_{n\to\infty} \Big(\varphi \big(K(x_n, x_{n+1}) \big) \Big) = 0.$$
 Hence
$$\lim_{n\to\infty} \varphi \big(\sigma(x_n, x_n + 1) \big) = 0. \ i. \ e. \ , r = 0.$$

Hence
$$\lim_{n \to \infty} \varphi(\sigma(x_n, x_n + 1)) = 0$$
. i. e., $r = 0$

Suppose that $\{x\}$ is not a Cauchy sequence. Then by Lemma 1.11,

There exist an $\in < 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with m(k) > n(k) > k and (i), (ii), (iii) and (iv) of Lemma 1.11 hold.

By taking $x=x_{n(k)},\,y=x_{m(k)-1}$ in (2.1.1), it follows that

$$\varphi(\sigma(x_{n(k)+1},x_{m(k)})) = \varphi(\sigma(T(x_{n(k)}),Tx_{m(k)-1})))$$

$$\leq \beta\left(\varphi\left(K(x_{n(k)},x_{m(k)-1})\right)\right)\varphi\left(K(x_{n(k)},x_{m(k)-1})\right)$$

(2.1.2)

Where

$$K(x_{n(k)}, x_{m(k)-1})$$

$$= \max\{\sigma(x_{n(k)}, Tx_{n(k)}), \sigma(x_{m(k)-1}, Tx_{m(k)-1}), \sigma(x_{n(k)}, Tx_{n(k)}) + \sigma(x_{m(k)-1}, Tx_{m(k)-1}) - \sigma(x_{n(k)}, Tx_{n(k)}) + \sigma(x_{m(k)-1}, Tx_{m(k)-1}) - \sigma(x_{m(k)-1}, Tx_{m(k)-1}) \}$$

$$= \max\{\sigma(x_{n(k)}, x_{m(k)-1}) - \max\{\sigma(x_{n(k)}, x_{n(k)+1}), \sigma(x_{m(k)-1}, x_{m(k)}), \sigma(x_{m(k)}, Tx_{n(k)+1}) + \sigma(x_{m(k)-1}, x_{m(k)}), \sigma(x_{n(k)}, Tx_{n(k)+1}) + \sigma(x_{m(k)-1}, x_{m(k)}) - \sigma(x_{n(k)}, Tx_{n(k)+1}) + \sigma(x_{n(k)}, Tx_{n(k)}) + \sigma(x_{n(k)}, Tx_{n(k)+1}) + \sigma(x_{n(k)}, Tx_{n(k)}) + \sigma(x_{n(k)}, Tx_{n(k)})$$

On letting $k \to \infty$ and from the Lemma 1.11 we get

$$\lim_{n \to \infty} K(x_{n(k)}, x_{m(k)-1} = \max\{0, 0, 0, 0 \in +0 - 0\} = \in.$$

Now, we have

$$\varphi\left(\sigma\left(x_{n(k)+1}, x_{m(k)}\right)\right) \leq \beta\left(\varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right)\right) \varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right)$$

$$\leq \beta\left(\varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right)\right) \varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right)$$

$$\leq \beta\left(\varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right)\right) \varphi\left(\sigma\left(x_{n(k)}, x_{m(k)-1}\right)\right)$$

And hence

$$\frac{\varphi(\sigma(x_{n(k)+1},x_{m(k)}))}{\varphi(\sigma(x_{n(k)},x_{m(k)-1}))} \leq \beta\left(\varphi\left(K(x_{n(k)},x_{m(k)-1})\right)\right) < 1.$$

On letting $k \to \infty$ and from the Lemma 1.11, we get

$$1 = \frac{\varphi(\epsilon)}{\varphi(\epsilon)} \le \lim_{k \to \infty} \beta(\varphi(K(x_{n(k)}, x_{m(k)-1}))) \le 1$$

So that
$$\beta\left(\varphi\left(K\left(x_{n(k),}\,x_{m(k)-1}\right)\right)\right) \to 1 \text{ as } k \to \infty.$$

Since
$$\beta \in S$$
, $\varphi\left(K\left(x_{n(k)}, x_{m(k)-1}\right)\right) \to 0$ as $k \to \infty$. $i.e.$, $\varphi(\epsilon) = 0$,

Since φ is continuous. Hence it follows that $\epsilon=0$, a contradiction.

Therefore $\{x_n\}$ is a Cauchy sequence in X, and since X is complete metric-like space, there exists $u \in X$ such that $\lim x_n = u$.

$$\lim_{n\to\infty} \sigma(\mathbf{x}_n, \mathbf{u}) = \sigma(\mathbf{u}, \mathbf{u}) = \lim \sigma(\mathbf{x}_n, \mathbf{x}_m) = 0.$$
 (2.1.3)

Now, we show that u is a fixed point of T.

First we assume that (iii) hold. i.e., T is continuous.

In this case, we have

$$u = \lim_{n \to \infty} T^n (x_0) = \lim_{n \to \infty} T^{n+1} (x_0) = T \left(\lim_{n \to \infty} T^n (x_0) \right) = T(u).$$
 Therefore u is a fixed point of T in X.

Theorem 2.2. Let (X, d) be a complete metric-like space, $\alpha: X \times X \to R$ be a function and let $T: X \to X$ be a (α, φ_K) generalized Geraghty contraction map. Suppose that the following conditions hold

- (i) T is α admissible;
- (ii) there exists $x_0 X$ such that $\alpha(x_0, Tx_0) \ge 1$ and set $x_n = Tx_{n-1}$ for n = 1, 2, 3, ...
- (iii) If $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge l$ for all n and $x_n \to x$ as $n \to \infty$ then there exists a sub-sequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)}, x) \ge 1$ for all k

Then T has a fixed point u in X.

Proof. From the proof of the theorem2.1, we have the sequence $\{x_n\}$ defined by $\{x_{n+1}\} = Tx_n$ for all $n \ge 0$ is a Cauchy in (X, σ) and converges to some $u \in X$. Also 2.1.3 holds, so is Cauchy sequence in (X, σ) and converges to some $u \in X$.

$$\lim_{n\to\infty}\sigma(x_n(k)+1,Tu)=\sigma(u,Tu).$$

Now we show that Tu = u

Suppose that $Tu \neq u$. i.e., $\sigma(Tu, u) > 0$.

From condition (iii), we have that there exists a sub-sequence $\{x_{n(k)}\}$ of $\{x_n\}$ such that $\alpha(x_{n(k)},u) \ge 1$ for all k consider

$$\sigma(x_n(k) + 1, Tu) \le \alpha(x_n(k), Tu)\sigma(Tx_n(k), Tu)$$

$$\le \beta \left(\varphi(K(x_n(k), u))\right)\varphi(K(x_n(k), u)) \quad (2.2.1)$$

Where

$$K(x_n(k), u) = \max\{\sigma(x_n, Tx_n), \sigma(u, Tu), \sigma(x_n, u) + |\sigma(x_n, Tx_n) - \sigma(u, Tu)|\}$$

$$\lim_{n \to \infty} K(x_n(k), u)$$

$$= \lim_{n \to \infty} \max\{\sigma(x_n, x_{n+1}), \sigma(u, Tu), \sigma(x_n, u) + |\sigma(x_n, x_{n+1}) - \sigma(u, Tu)|\}$$

$$= \sigma(u, Tu)$$

Letting $k \rightarrow \infty$ in (2.2.1)

$$\sigma(u,Tu) \leq \beta \left(\varphi \big(K(x_n(k),u) \big) \right) \varphi \big(\sigma(u,Tu) \big) <$$

$$\sigma(u,Tu), \text{ which is contradiction. so that } u \text{ is a fixed point of } T.$$

3. COROLLARIES AND EXAMPLES

In the theorem 2.1, if φ_K is the identity map we have the following corollary.

Corollary 3.1. Let (X, σ) be a complete metric-like space. Let $T: X \to X$ be a α generalized Geraghty contraction. Suppose that

- (i) T is α admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$
- (iii) T is continuous.

Then there exists $a u \in X$ such that $\sigma(u; u) = 0$.

Proof: Assume that in addition that (H1)

if
$$\sigma(x,x) = 0$$
 for some $x \in X$, then $\alpha(x,x) \ge 1$.

Then such u is a fixed point of T.

In the theorem 2.1, if $\alpha = 1$ is the identity map we have the following corollary.

Corollary 3.2. Let (X, σ) be a complete metric-like space. Let $T: X \to X$ be a (φ) generalized Geraghty contraction. Suppose that

- (i) T is α admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$
 - (ii) T is continuous.

Then there exists a $u \in X$ such that $\alpha(u; u) = 0$. Assume that in addition that (H1) if $\sigma(x, x) = 0$ for some $x \in X$, then $\alpha(x; x) \ge 1$. Then such u is a fixed point of T.

The following is an example in support of the theorem 2.1.

Example:3.3

. Let
$$X = [0, \infty)$$
 and $\sigma(x, y) = x + y$. Then (X, σ) is a complete metric-like space.

We define
$$T: X \times X$$
 by $T(x) = \begin{cases} \frac{x^2}{2} & \text{if } x \in [0,1] \\ 6x - \frac{11}{2} & \text{otherwise.} \end{cases}$

We define
$$\varphi: [0,\infty) \to [0,\infty)$$
 by $\varphi(t) = \frac{t}{2}$ and

$$\alpha: X \times X \to [0, \infty) \text{ as } \alpha(x, y) = \begin{cases} 1 & \text{if } x = \frac{3}{4}, y = \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

Now we verify the inequality 2.1.1 when $x = \frac{3}{4}$, $y = \frac{1}{2}$

$$\alpha \begin{pmatrix} \frac{3}{4} & \frac{1}{2} \end{pmatrix} \varphi \left(\sigma \left(T \frac{3}{4}, T \frac{1}{2} \right) \right) = \varphi \left(\frac{12}{31} \right) = \frac{13}{64}$$

$$K\left(\frac{3}{4} \quad \frac{1}{2}\right) = \frac{53}{32}, \varphi\left(K\left(\frac{3}{4}, \frac{1}{2}\right)\right) = \left(\frac{53}{64}\right), \beta\left(\varphi\left(K\left(\frac{3}{4}, \frac{1}{2}\right)\right)\right) = \frac{64}{117}$$

$$\alpha\left(\frac{3}{4} \quad \frac{1}{2}\right)\varphi\left(\sigma\left(T\frac{3}{4},T\frac{1}{2}\right)\right) = \frac{13}{64} \leq \left(\frac{54}{117}\right).\left(\frac{53}{64}\right) = \beta\left(\varphi\left(K\left(\frac{3}{4} \quad \frac{1}{2}\right)\right)\right).\varphi\left(K\left(\frac{3}{4} \quad \frac{1}{2}\right)\right).$$

Therefore T satisfy all the conditions of the hypothesis Theorem 2.1 and T has a unique fixed point 0.

References

- [1]. A. Amini-Harindi, Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012 (2012), 204, 10 pages.
- [2]. Aydi. H, and Karapinar. E., New Geraghty type contractions on metric-like spaces, J. Nonlinear Sci. Appl., 2017 (10), 780-788.
- [3]. Aydi. H, Felhi A and Sahmim S., Fixed point results for generalized $\alpha \varphi$ —contractions in metric-like spaces and Applications. Electronic Journal of Differential Equations, 2015, 15 1-15.
- [4] Acar. O and Ishan Altun; A Fixed point theorem for _F Geraghty contraction on metric-like spaces. Fasciculi Mathematica, 2017, Nr 59, 5-12.
- [5] G. V. R. Babu and P. D. Sailaja. A _xed point theorem of generalized weak contractive maps in orbitally complete metric spaces. Thai Journal of Mathematics, 2011, 9(1): 1-10.
- [6] Babu, G. V. R., Sarma, K. K. M. and Krishna, P. H., Fixed points of -weak Geraghty contractions in partially ordered metric spaces, J. of Adv. Res. in Pure Math., 6(4) 2014, 9 23.
- [7] Babu, G. V. R., Sarma, K. K. M. and Krishna, P. H., Necessary and sufficient conditions for the existence of fixed points of weak generalized Geraghty contractions, Int. J. Mathematics and Scientific computing, 5(1) 2015, 31 38.
- [8] M. A. Geraghty. On contractive maps. proc. of Amer. Math. soc., 1973, 40: 604-608.
- [9] R. Kannan. Some results on _xed points. Bull. Calcutta Math. Soc., 1968, 60:71-76.
- [10] Karapinar E. and P. Salimi., Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory Appl., 2013(2013): 222, 19 pages.
- [11] Karapinar E, Alsulami H. H, and Noorwali M., Some extensions for Geraghty type contractive mappings, Fixed Point Theory Appl., 2015(2015), 22 pages .
- [12] M. S. Khan, M. Swaleh and S. Sessa. Fixed point theorems by altering distances between the points. Bull, Aust, Math. Soc., 1984, 30: 205-212.
- [13] Samet.B, Vetro.C and Vetro.P, Fixed point theorems for α - Ψ contractive type mappings, Nonlinear Anal., 75.(2012), 2154-2165.
- [14] K. P. R. Sastry, G. V. R. Babu, K. K. M. Sarma and P. H. Krishna. Fixed points of Geraghty contractions in partially ordered metric spaces under the influence of altering distances. IJMA 2014 5(10): 185-195.