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Abstract-   This paper presents a new method for the solution of the non-linear partial differential equation by the 
combination of lifting scheme and haar wavelet filters multigrid method. It uses the haar wavelet filters and lifting 

technique for the efficiency of the multigrid method, which is tested in the Burgers equation. Computational results using 
a code based on our method is presented and compared with the exact solution to show the efficiency of the method. 
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I. INTRODUCTION 

Numerous researchers have introduced different methods to resolve the Burger’s equation as a replica of 
turmoil. For the solution of Burger’s equation dissimilar authors developed the distinct types of methods   
and they are presented in these references [1-11]. We present a new approach and solved the Burger’s 
equation efficiently by the combination of lifting scheme and haar wavelet filters multigrid method.  
2. PRELIMINARIES OF HAAR WAVELET FILTERS 
Filters are initiated from wavelets with compact support and are such that, 

0 for 0 andnh n n L   , in which L is the length of the filter. The minimum requirements for 

these compact FIR filters are: 

(i)The length of the scaling filter nh  must be even. (ii) 2n
n

h   (iii) 2( ) ( ),n n k
n

h h k  in which 

( )k  is the Kronecker delta, such that, it is equal to 1 for 0k   or 0 for 1k  . 
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3. HAAR WAVELET FILTERS MULTIGRID METHOD  
Haar wavelet filters property is explored by Multigrid method for create the steps of matrices, i.e., 

1 1
1

j j j j
j jA R A P 

 , where 2

nh

nhR  restriction operator 
1

1:j
j j jR V V

 , prolongation operator 

1
1 1 1

2

: , ( ) ,nh j j j T
nh j j j j j jP P V V P R V

     denote the space of the variables of the system at level j and 

1jV   one of the sub space of jV . In this approach the low-pass filter coefficients ih are used in the 

building of a matrix R, which is used as a restriction operator. Haar wavelet filters restriction operator 

2

nh

nhR  from level j to j-1 takes the following form, 

1 0

1 0

1 2

1 0
2

0 0 0 . . . . 0

0 0 0 0 0 . . . 0

. .

. .

. .

0 0 0 . . . . . 0

n h
j

j n h

n
n

h h

h h

R R

h h





 
 
 
 

   
 
 
 
    

The prolongation operator and the next matrix of hierarchy, in the corresponding level, is defined in the 
usual form [12], 

1
1

2

( )j nh j T
j nh jP P R 
    

According to the DWT theory, the measurement of the analyzed matrix must be an integer power of 2 
[13]. In the algebraic multigrid (AMG) background this constraint would symbolize a great restriction on 
the use of the technique. As a purpose of that, it was made the following simplification, the measurement 

of the restriction operator
1j

jR 

, for all j, was defined as being (N/2) N , where 

                                                                      








oddisnifn

evenisnifn
N

1

,

                                 (2.1)

 

with dim( ).jn A  If   n is odd, coefficient matrix and right hand side vector is used as given is (2.2) and 

(2.3).

                                                                         ( 1 ) ( 1 ) 1 . 0

j

j n n

n n

A
A 

  

        
                                

(2.2) 

 

                                                                           
( 1) ( 1 ) 1 .0

j

j n n

n n

f
f 

  

        
                                 

(2.3) 
Therefore, the Algebraic wavelet multigrid (WAMG) setup phase depends only of the choice of the filters 
coefficients. This approach is very interesting mainly because it avoids the coarsening process and the 
heuristic parameters present in the standard AMG, simplifying the use of the method as well as its parallel 
implementation in distributed memory computers [14, 15]. Moreover, the WAMG setup time is 
powerfully reduced, since it is not needed to calculate the full wavelet transform in each level and the 
DWT is imperfect to the calculation of a sequence of approximation coefficients. The representation of 
Haar wavelet via lifting form presented as;  
Decomposition: 
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Consider approximate solution S u  like as signal, and then apply the HWLS decomposition (finer to 
coarser) procedure as, 

1

1 1

1 1

1

( 2 ) ( 2 1 ) ,

1
( 2 1 ) ,

2

2 a n d

1

2

d S j S j

s S j d

S s

D d

  

  





                                                 (3.3) 

Reconstruction: 
Now apply the HWLS reconstruction (coarser to finer) procedure as, 
 

1

1 1

1 1

1

2 ,

1
,

2

1
( 2 1 ) a n d

2

( 2 ) ( 2 1 )

d D

s S

S j s d

S j d S j





  

  

                                               (3.4) 

which is the necessary resolution of the given equation. 
4. HAAR WAVELET FILTERS MULTIGRID METHOD FOR THE SOLUTION OF     NON-LINEAR 

BURGURS EQUATION 
In this section, we introduce Haar wavelet filters Multigrid method for the solution of Non-linear Burgurs 
equation. This method uses the values of the function and its derivatives at consecutive points. In order to 
find numerical solution of the Burgurs equations, it should be discretized in both space and time. The 

spatial region[ , ]a b  is discretized by N equidistant points with space step 1 ,i ih x x 
 

1,....., 1,i N  where 1 2 .Na x x x b    
 

We consider the following initial boundary value 

problem, 
, 0 1 , 0t x x xU U U U x t T            (4.1) 

Coefficient μ > 0 represents the kinematics viscosity of the liquid [3, 16, 17]. With the given conditions: 

1 2

( , 0 ) ( ) , 0 1 ,

( 0 , ) ( ) , (1 , ) ( ) , 0

U x x x

U t g t U t g t t

  

  
             (4.2) 

To set up the HWFMG solution to this problem, let vh consist of the grid points ,j

j
x

n
 for some positive 

even integer n, and let ( )j ju u x and ( ),j jf f x for j = 0, 1, ….,n. (0,1] /t N   & 

( 1) , 1,2,...., .st s t s N     Of the many possible ways to discretize this non-linear differential 

equation, we get the vector equation ( )h h h
jA u f is nonlinear in hu . To solve this non-linear system of 

equations, Newton’s method can be stated explicitly as follows:      

    1
1 ( ) ( ), 1 1n nu u J u F u n N

                                               (4.3)     

To examine the HWFMG correction step, assume that an approximation hv  has been obtained initially on 
the finer grid, secondly applied the lifting algorithm explained in section 3 for denoising the approximate 
solution and then residual equation is given by 

                                                                    ( ) ( )nh nh nh nh nh nh
j j jB v E B v r   ,       (4.4) 

where, ( ) 0nh h h h
jB A u f    & 

Solving the component form of eqn. (4.4), using eqn (4.3) & hv  to obtain E, and then substitute this in 

eqn. (4.4) to obtain 
nh
jr . Restrict the present approximation and its finer grid residual to the coarse grid 

successively using   
      

22
nh

jnh

nh
nhr rR , 2 , , 1, 2......jn j J J J                       (4.5) 
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Solve the coarser grid problem 2 2 2

nh nh nh

A e r  at the desired coarsest level to obtain,      

                                                                             
2 2 2

1
n h n h n h

e A r


 
 
 
 


 

Interpolate the error approximation up to the finer grid, successively using   2

2

n h
n h n h

n he P e , 

2 jn 
, 1, 2......

2 2 2

J J J
j   

                      (4.6)   

Correct the current finer grid approximation:  

    nhnh nhu v e  .                                                                     (4.7) 

In the next section, numerical example is studied to demonstrate the accuracy and efficiency of the 
proposed method. 
5. METHOD OF IMPLEMENTATION 
In this section, one example is provided to illustrate the validity and effectiveness of the proposed 
method. The computation associated with the example in this paper is performed using MATLAB. We 
account norm two of error which is defined by, 

1
2 2

2
1

ˆ( ( ( , ) ( , ) ) )
n

i i
i

E U x t U x t


   

where ˆ ( , )iU x t  is the solution obtained by equation (4.7) solved by HWFMG method and ( , )iU x t is the 

exact solution. 
Consider the Burger’s equation [18] with the initial condition, 

, 0 1, 0t x x xU U U U x t T              (5.1) 

( ) ( , 0 ) , 0 1x U x x              (5.2) 

and non-homogeneous boundary conditions, 

1 2(1) (0, ), ( ) (1, ), 0 1g U t g t U t t T     (5.3) 

The exact solution of the Eqn. (5.1) is: 
0 . 1 0 . 5 0 . 0 5

( , ) , , ( 0 . 5 4 .9 5 ) ,

0 .2 5 0 . 5
( 0 . 5 0 . 7 5 ) ( 0 . 5 0 .3 7 5 )

A B C

A B C

e e e
U x t w h e r e A x t

e e e

B x t a n d C x t



 

  

  

 
   

 

     

(5.4) 

Finite difference approximation of equation (5.1) is, 
( 1) ( 1)

1 1

2

2
( ) 0, 1 1

nh n h nh n h nh nh nh
j j j j j j jh nh

j j

u u u u u u u
A u u j N

k h h


 
 

      
            

   

     (5.5)                                      Which is 

of the form ( )h h hA u f  is nonlinear in 
hu , solving the nonlinear system of eqn. (5.5), using 

Newton’s Method, 
 

1
1 ( ) ( ) , 1 1n nu u J u F u n N

      .
 

Approximation hv  has been obtained on the finer grid. Residual equation is given by, 

 ( ) ( )nh nh nh nh nh nh
j j jB v E B v r  

,
where ( ) 0nh h h h

jB A u f            (5.6)                          

Appears in component form as, 

     

1 1

1 1 1 1 1 1 1 1

1 1 1 1

2

( )
4 4 4 4

2

4

n h n h
j j

n h n h n h n h n h n h n h n h
j j j j j j j jn h

j

n h n h n h n h n h n h
j jj j j j

E E
v E

v v E v v E
r

k k h h

v E v E v E

h


 

       

   

   
    
   
   

  
 
  
 

   
  

  

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Canceling terms leaves the coarse-grid equation for the unknowns nh
jE :

    

     
 

1 1

1 1 1 1 1 1 1 1

1 1 1 1

2

( )

( )

4 4 4 4

2

4

n h n h
j j

h j j j
n h n h n h n h n h

n h n h n h n h n h n h n h n h
j j j j j j j j

n h n h n h n h n h n h
j jj j j j

E E
v E

I f A v r

v v E v v E

k k h h

v E v E v E

h


 

       

   

   
     
   
   

  
    
 
 

   
 

  

 (5.7) 

As before, the terms 1 1, , ,nh nh nh
j j jv v v   and nh

jr  are obtained by restriction from the finer grid.  

Solving Eqn. (5.7) again using Newton’s method, we obtain E. Substituting this value of E in Eqn. (5.6), 

we obtain 16
nhr .  Restrict the present approximation and its finer grid residual to the coarse grid 

successively using, 

16
2 2

nh nh

nh
nhr R r

,
 2 , , 1, 2......jn j J J J     

Solve the coarse-grid problem 2 2 2

nh nh nh

A e r  at the desired coarsest level to obtain,        

               2 2 2

1
n h n h n h

e A r


 
 
 
 

 . 

Interpolate the error approximation up to the finer grid, successively using,

        

2

2

n h
n h n h

n he P e ,    

, 1, 2......
2 2 2

J J J
j   

 
These corrections are interpolated up to the finer grid and used to update the finer grid approximation hv . 

Correct HWFMG solution of the problem 5.1 with 5.2 is 
hh hu v e  . Computer simulation was 

carried out in the case N= 16, the computed HWFMG results are compared with the AMG and exact 
solution are presented in the Table 5.1 & 5.2. More accurate results can be obtained by using a larger N. 
In Table 5.3, we show norm two of error for various values of μ, t and N with Δt = 0.0001.  
Table 5.1. AMG, HWFMG and Exact Solutions of Problem 5.1 for N=16, t=0.0001. 

x AMG HWFMG Exact 

0.05882 0.59712 0.59700 0.56336 

0.11765 0.59384 0.59383 0.55935 

0.17647 0.58962 0.58961 0.55534 

0.23529 0.58537 0.58536 0.55133 

0.29412 0.58112 0.58111 0.54733 

0.35294 0.57687 0.57686 0.54332 

0.41176 0.57263 0.57262 0.53933 

0.47059 0.56839 0.56838 0.53533 
0.52941 0.56416 0.56415 0.53135 

0.58824 0.55994 0.55993 0.52737 

0.64706 0.55572 0.55572 0.52339 
0.70588 0.55151 0.55150 0.51943 

0.76471 0.54731 0.54731 0.51547 

0.82353 0.54312 0.54311 0.51152 

0.88235 0.53891 0.53891 0.50758 

0.94118 0.53571 0.53570 0.50365 

Table 5.2. AMG, HWFMG and Exact Solutions of Problem 5.1 for N=16, t=0.000001. 

x AMG HWFMG Exact 

0.05882 0.56368 0.56368 0.56335 

0.11765 0.55966 0.55966 0.55934 
0.17647 0.55565 0.55565 0.55533 

0.23529 0.55164 0.55164 0.55132 

0.29412 0.54764 0.54764 0.54732 
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0.35294 0.54363 0.54363 0.54332 

0.41176 0.53963 0.53963 0.53932 
0.47059 0.53564 0.53564 0.53533 

0.52941 0.53165 0.53165 0.53134 

0.58824 0.52767 0.52767 0.52736 
0.64706 0.52369 0.52369 0.52339 

0.70588 0.51972 0.51972 0.51942 

0.76471 0.51576 0.51576 0.51546 

0.82353 0.51181 0.51181 0.51151 
0.88235 0.50787 0.50787 0.50757 

0.94118 0.50394 0.50394 0.50364 

Table 5.3. Norm two of error for various values of μ, t and n of the problem 5.1. 
t / μ, n μ = 1,  

N = 256 
μ = 1,  
N = 512 

μ = 0.1, 
N = 256 

μ =0.1, 
N = 512 

0.2 2.4244E− 11 1.7892E − 10 2.9949E −5 2.7542E − 6 
0.4 6.4101E − 11 1.8886E − 10 6.7446E −5 5.1001E − 6 
0.6 3.7221E − 10 5.0883E − 10 8.9219E −5 6.9656E − 6 
0.8 6.0105E − 10 6.8384E − 10 8.2415E −5 7.3609E − 6 
1 6.3600E − 10 7.2012E − 10 5.5745E −5 5.7378E − 6 

 
6. CONCLUSIONS 

An efficient haar wavelet filters multigrid method for the numerical solution of non-linear partial 
differential equation is proposed. From the figures and tables, the proposed scheme is very convenient 
and effective. However the CPU time of HWFMG method is lower than others. Hence the scheme has 
expansive variety of applications in science and engineering field. 
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