Supra Pairwise b-Locally open(closed) functions in Supra Bitopological Spaces

R. GOWRI¹ and A.K.R. RAJAYAL²

 ¹ Assistant Professor, Department of Mathematics,
Government College for Women(Autonomous), Kumbakonam, India E-mail: gowrigck@rediffmail.com
² Research Scholar, Department of Mathematics,
Government College for Women(Autonomous), Kumbakonam, India E-mail: rajayalk@gmail.com

Abstract

The purpose of this paper is to define and study supra pairwise b-Locally open(res. closed) functions in supra bitopological spaces and obtain some results and several characterizations concerning these concepts are discussed. **Mathematics Subject Classification:** 54D05, 54D10, 54D08, 54D20 **Keywords:** Supra bitopology, S_{τ} -p-bL-open, S_{τ} -p-bL-closed.

1 Introduction

The concept of bitopological spaces was initiated by Kelly[4]. In 1983, Masshhour[6] introduced the concept of supra topological spaces and discussed the S-continuous maps and S^* -continuous maps. The arbitrary union condition is enough to have a supra topological space. Gowri and Rajayal[2] are established the concept of supra bitopological spaces. Rajesh[8] introduced the notion of b-Locally closed sets in bitopological spaces and Tripathy and Sarma[11] study pairwise b-Locally open and pairwise b-Locally closed functions in bitopological spaces. In this paper, we investigate supra pairwise bL-open(res. closed) functions in supra bitopological spaces and also discuss various properties of these functions.

2 Preliminaries

Definition 2.1 [6] (X, S_{τ}) is said to be a supra topological space if it is satisfying these conditions:

(1) $X, \emptyset \in S_{\tau}$ (2) The union of any number of sets in S_{τ} belongs to S_{τ} .

Definition 2.2 [6] Each element $A \in S_{\tau}$ is called a supra open set in (X, S_{τ}) , and its complement is called a supra closed set in (X, S_{τ}) .

Definition 2.3 [2] If S_{τ_1} and S_{τ_2} are two supra topologies on a non-empty set X, then the triplet $(X, S_{\tau_1}, S_{\tau_2})$ is said to be a supra bitopological space.

Definition 2.4 [2] Each element of S_{τ_i} is called a supra τ_i -open sets(briefly S_{τ_i} -open sets) in $(X, S_{\tau_1}, S_{\tau_2})$. Then the complement of S_{τ_i} -open sets are called a supra τ_i -closed sets(breifly S_{τ_i} -closed sets), for i = 1, 2.

Definition 2.5 [2] If $(X, S_{\tau_1}, S_{\tau_2})$ is a supra bitopological space, $Y \subseteq X$, $Y \neq \emptyset$ then $(Y, S_{\tau_1^*}, S_{\tau_2^*})$ is a supra bitopological subspace of $(X, S_{\tau_1}, S_{\tau_2})$ if $S_{\tau_1^*} = \{U \cap Y; U \text{ is a } S_{\tau_1} - \text{ open in } X\}$ and $S_{\tau_2^*} = \{V \cap Y; V \text{ is a } S_{\tau_2} - \text{ open in } X\}.$

Definition 2.6 [2] The S_{τ_i} -closure of the set A is denoted by S_{τ_i} -cl(A) and is defined as S_{τ_i} -cl(A) = $\cap \{B : B \text{ is a } S_{\tau_i} - closed \text{ and } A \subseteq B, \text{ for } i = 1, 2\}.$

Definition 2.7 [2] The S_{τ_i} -interior of the set A is denoted by S_{τ_i} -int(A) and is defined as S_{τ_i} -int $(A) = \bigcup \{B : B \text{ is a } S_{\tau_i} - open \text{ and } B \subseteq A, for i = 1, 2\}.$

Definition 2.8 [3] Let A be a subset of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$, then A is said to be supra τ_{ij} -Locally-open(briefly, $S_{\tau_{ij}}$ -L-open) if $A = U \cup V$, where U is S_{τ_i} -closed and V is S_{τ_j} -open in X. The family of all $S_{\tau_{ij}}$ -L-open sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -L-O(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.9 [3] Let A be a subset of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$, then A is said to be supra τ_{ij} -Locally-closed(briefly, $S_{\tau_{ij}}$ -L-closed) if $A = U \cap V$, where U is S_{τ_i} -open and V is S_{τ_j} -closed in X. The family of all $S_{\tau_{ij}}$ -L-closed sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -L-C(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.10 [3] Let A be a subset of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$, then A is said to be supra τ_{ij} -b-open(briefly, $S_{\tau_{ij}}$ -b-open) if $A \subseteq S_{\tau_j}$ -cl $(S_{\tau_i}$ -int(A)) $\cup S_{\tau_i}$ -int $(S_{\tau_j}$ -cl(A)). where i, j = 1, 2 and $i \neq j$. The family of all $S_{\tau_{ij}}$ -b-open sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -bO(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.11 [3] Let A be a subset of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$, then A is said to be supra τ_{ij} -b-closed(briefly, $S_{\tau_{ij}}$ -b-closed) if S_{τ_j} -int $(S_{\tau_i}$ -cl(A)) \cap S_{τ_i} -cl $(S_{\tau_j}$ -int(A)). where i, j = 1, 2 and $i \neq j$. The family of all $S_{\tau_{ij}}$ -b-closed sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -bC(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.12 [3] A subset A of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is called supra τ_{ij} -b-Locally-open(briefly, $S_{\tau_{ij}}$ -bL-open) if $A = U \cup V$, where U is S_{τ_i} -b-closed and V is S_{τ_j} -b-open in $(X, S_{\tau_1}, S_{\tau_2})$.

The family of all $S_{\tau_{ij}}$ -bL-open sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -bL-O(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.13 [3] A subset A of a supra bitopological space $(X, S_{\tau_1}, S_{\tau_2})$ is called supra τ_{ij} -b-Locally-closed(briefly, $S_{\tau_{ij}}$ -bL-closed) if $A = U \cap V$, where U is S_{τ_i} -bopen and V is S_{τ_i} -b-closed in $(X, S_{\tau_1}, S_{\tau_2})$. The family of all $S_{\tau_{ij}}$ -bL-closed sets of $(X, S_{\tau_1}, S_{\tau_2})$ is denoted by $S_{\tau_{ij}}$ -bL-C(X), where i, j = 1, 2 and $i \neq j$.

Definition 2.14 [3] The $S_{\tau_{ii}}$ -bL-closure of the set A is denoted by $S_{\tau_{ij}}$ -bL-cl(A) and is defined as $S_{\tau_{ij}}$ -bL-cl(A) = $\cap \{B : B \text{ is a } S_{\tau_{ij}} - bL - closed \text{ and } A \subseteq B, \text{ for } i, j = 1, 2\}$.

Definition 2.15 [3] The $S_{\tau_{ij}}$ -bL-interior of the set A is denoted by $S_{\tau_{ij}}$ -bL-int(A) and is defined as $S_{\tau_{ij}}$ -bL-int(A) = $\cup \{B : B \text{ is a } S_{\tau_{ij}} - bL - open \text{ and } B \subseteq A, \text{ for } i, j = 1, 2\}.$

3 Supra pairwise b-Locally open mapping

In this section, we introduced supra pairwise b-Locally open mapping in supra bitopological spaces.

Definition 3.1 A function $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ is said to be supra pairwise continuous(briefly, S_{τ} -p-continuous) if the image of each S_{τ_i} -open set in X is $S_{\tau'_i}$ -open set in Y, where i = 1, 2.

Definition 3.2 Let $(X, S_{\tau_1}, S_{\tau_2})$ and $(Y, S_{\tau'_1}, S_{\tau'_2})$ be two supra bitopological spaces. A function $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ is called supra pairwise bL-open(briefly, S_{τ} -p-bL-open) mapping if the image of each $S_{\tau_{ij}}$ -bL-open set in X is $S_{\tau'_i}$ -open set in Y, where i = 1, 2.

Example 3.3 Let $X = \{a, b, c, d\}, Y = \{p, q, r, s\},$ $S_{\tau_1} = \{\emptyset, X, \{a, d\}, \{b, d\}, \{a, b, d\}\},$ $S_{\tau_2} = \{\emptyset, X, \{a, b\}, \{b, c\}, \{a, b, c\}\},$ $S_{\tau_1'} = \{\emptyset, Y, \{q\}, \{r\}, \{q, r\}, \{r, s\}, \{q, s\}, \{q, r, s\}\},$ $S_{\tau_2'} = \{\emptyset, Y, \{s\}, \{q, r\}, \{q, s\}, \{r, s\}, \{q, r, s\}\}.$ Consider the function $f:(X, S_{\tau_1}, S_{\tau_2}) \rightarrow (Y, S_{\tau_1'}, S_{\tau_2'})$ defined by f(a) = r, f(b) = q, f(c) = r, f(d) = s. Here $S_{\tau_{12}}$ -bL-O(X) = $\{\emptyset, X, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ and image of each $S_{\tau_{12}}$ -bL-O(X) are $S_{\tau_1'}$ -open. Also $S_{\tau_{21}}$ -bL-O(X) = $\{\emptyset, X, \{d\}, \{a, b\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ and image of each $S_{\tau_{21}}$ -bL-O(X) are $S_{\tau_2'}$ -open. Hence f is S_{τ} -p-bL-open mapping.

Theorem 3.4 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ be a mapping between two supra bitopological spaces. Then the following are equivalent. (i) f is S_{τ} -p-bL-open mapping. (ii) $f(S_{\tau_{ij}}$ -bL-int(B)) $\subseteq S_{\tau'_i}$ -int(f(B)), for every subset B of X, where i = 1, 2.

Proof: (i) \implies (ii) Since $S_{\tau_{ij}}$ -bL-int(B)) is a $S_{\tau_{ij}}$ -bL-open set in X for any subset B of X and $S_{\tau_{ij}}$ -bL-int(B)) \subseteq B. Thus, we have $f(S_{\tau_{ij}}$ -bL-int(B)) \subseteq f(B). Since f is S_{τ} -p-bL-open mapping, therefore $f(S_{\tau_{ij}}$ -bL-int(B)) is $S_{\tau'_i}$ -open. Hence $f(S_{\tau_{ij}}$ -bL-int(B)) $\subseteq S_{\tau'_i}$ -int(f(B)).

(ii) \implies (i) Let B be a $S_{\tau_{ij}}$ -bL-open set in X. Then we get $S_{\tau'_i}$ -int(f(B)) \subseteq f(B) \rightarrow (1) By hypothesis f($S_{\tau_{ij}}$ -bL-int(B)) $\subseteq S_{\tau'_i}$ -int(f(B)) \implies f(B) $\subseteq S_{\tau'_i}$ -int(f(B)) \rightarrow (2). By (1) and (2) we have f(A) is $S_{\tau'_i}$ -open in Y. Therefore f is S_{τ} -p-bL-open mapping.

Definition 3.5 A subset U is called an $S_{\tau_{ij}}$ -bL-open neighbourhood of a point x of $(X, S_{\tau_1}, S_{\tau_2})$ if there exists a $S_{\tau_{ij}}$ -bL-open set V such that $x \in V \subseteq U$.

Theorem 3.6 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ be a function. Then the following are equivalent.

(i) f is S_{τ} -p-bL-open mapping. (ii) For each $x \in X$ and each $S_{\tau_{ij}}$ -bL-open neighbourhood U of x in X, then there exists a $S_{\tau'_i}$ -neighbourhood D of f(x) such that $D \subseteq f(U)$, where i = 1, 2.

Proof: (i) \implies (ii) Let U be a $S_{\tau_{ij}}$ -bL-open neighbourhood of x and \in X. Then there exists a $S_{\tau_{ij}}$ -bL-open set V in X such that $x \in V \subseteq U$. Since f is S_{τ} -p-bL-open mapping, by Theorem (3.4), we have $f(S_{\tau_{ij}}$ -bL-int(V)) $\subseteq S_{\tau'_i}$ -int(f(V)). Therefore f(V) is $S_{\tau'_i}$ -open set such that $f(x) \in f(V) \subseteq f(U)$. Put f(V) = D, then we have D is a $S_{\tau'_i}$ -open set such that $D \subseteq f(U)$.

(ii) \implies (i) Let U be a $S_{\tau_{ij}}$ -bL-open set in X and $x \in X$. By hypothesis, for each $f(x) \in f(U)$, then there exists a $S_{\tau'_i}$ -neighbourhood V of f(x) such that $V \subseteq f(U)$. Since V is $S_{\tau'_i}$ -neighbourhood of f(x), then there exists a $S_{\tau'_i}$ -open set D such that $f(x) \subseteq D \subseteq V$.

Now $f(V) = \bigcup D$: $f(x) \in f(U)$. It is clear that f(U) is $S_{\tau'_i}$ -open. Therefore f is S_{τ} -p-bL-open mapping.

Theorem 3.7 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ and $g:(Y, S_{\tau'_1}, S_{\tau'_2}) \to (Z, S_{\tau''_1}, S_{\tau''_2})$ be two mappings. If $g \circ f: X \to Z$ is S_{τ} -p-bL-open mapping and g is S_{τ} -p-continuous injection, then f is S_{τ} -p-bL-open mapping.

Proof: Let C be an S_{τ} -p-bL-open set in X. Since $g \circ f$ is S_{τ} -p-bL-open mapping, therefore $(g \circ f)(c)$ is $S_{\tau''_i}$ -open. Further g is S_{τ} -p-continuous and injective, then $g^{-1}(g(f(c))) = f(c)$ is $S_{\tau''_i}$ -open. Therefore f is S_{τ} -p-bL-open mapping.

Theorem 3.8 A function $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ is S_{τ} -p-bL-open iff for any subset B of Y and for any $S_{\tau_{ij}}$ -bL-closed set C in X such that $f^{-1}(B) \subseteq C$, then there exists a $S_{\tau'_i}$ -closed set D containing B such that $f^{-1}(D) \subseteq C$, where i = 1, 2.

Proof: Let E be a $S_{\tau_{ij}}$ -bL-open set in $(X, S_{\tau_1}, S_{\tau_2})$. Putting $B = Y - f(E) \implies f^{-1}(B) = f^{-1}(Y) - E = X - E \rightarrow (1)$.

Then X – E is a $S_{\tau_{ij}}$ -bL-closed set in X such that $f^{-1}(B) \subseteq X - E$. By hypothesis, there exists a $S_{\tau'_i}$ -closed set D containing B such that $f^{-1}(D) \subseteq X - E \implies D \subseteq$ $f(x) - f(E) = Y - f(E) \implies f(E) \subseteq Y - D \rightarrow (2)$. Since B \subseteq D, we have Y – D \subseteq Y – B = f(E) by (1) \implies Y – D \subseteq f(E) \rightarrow (3). Then from (2) and (3), we get f(E) = Y - D and so f(E) is $S_{\tau'}$ -open. Since D is $S_{\tau'}$ -closed. Therefore, f is S_{τ} -p-bL-open mapping.

Conversely, let B be any subset of Y and C be a $S_{\tau_{ij}}$ -bL-closed set of X such that $f^{-1}(B) \subseteq C$. Suppose that f is S_{τ} -p-bL-open mapping. Let D = Y - f(X - C). Since C is $S_{\tau_{ij}}$ -bL-closed set in X and so X – C is $S_{\tau_{ij}}$ -bL-open set in X. Since f is S_{τ} -p-bL-open, therefore f(X - C) is $S_{\tau'_i}$ -open.

 \implies Y - f(X - C) is $S_{\tau'}$ -closed. \implies D is $S_{\tau'}$ -closed. Now, D = Y - f(X - C) $\implies f^{-1}(D) = \mathbf{X} - (\mathbf{X} - \mathbf{C}) \subseteq \mathbf{C}.$ $\implies f^{-1}(D) \subseteq \mathbb{C}.$ Since $f^{-1}(B) \subseteq C$ \implies X - f⁻¹(B) \supset X - C \implies Y - B \supset f(X - C) \implies B \subseteq Y - f(X - C) = D \implies B \subseteq D.

Then there exists a $S_{\tau'_i}$ -closed set D such that $f^{-1}(D) \subseteq \mathbb{C}$.

Theorem 3.9 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ be a mapping. Then the following are equivalent.

(i) f is S_{τ} -p-bL-open mapping. (ii) $f^{-1}(S_{\tau'_i} - cl(B)) \subseteq S_{\tau_{ij}} - bL - cl(f^{-1}(B))$ for every subset B of Y, where i = 1, 2.

Proof: (i) \implies (ii) Let B be a subset of Y. Then we have $f^{-1}(B) \subseteq S_{\tau_{ij}}$ -bL $cl(f^{-1}(B))$ and $S_{\tau_{ij}}$ -bL- $cl(f^{-1}(A))$ is $S_{\tau_{ij}}$ -bL-closed set in X. Since f is S_{τ} -p-bL-open mapping, by Theorem 3.8, then there exists a $S_{\tau'}$ -closed set C such that $B \subseteq C$ and $f^{-1}(C) \subseteq S_{\tau_{ij}}$ -bL-cl $(f^{-1}(B))$. Also B \subseteq C. $\implies f^{-1}(B) \subseteq f^{-1}(C) \subseteq S_{\tau_{ij}} \text{-bL-cl}(f^{-1}(B))$ $\implies f^{-1}(S_{\tau'} \operatorname{-cl}(\mathbf{B})) \subseteq S_{\tau_{ij}} \operatorname{-bL-cl}(f^{-1}(B)).$ (ii) \implies (i) Let B be a subset of Y and C be a $S_{\tau_{ij}}$ -bL-closed set in X such that $f^{-1}(B) \subseteq C$. Then we get $B \subseteq S_{\tau'_i}$ -cl(B) and $S_{\tau'_i}$ -cl(B) is $S_{\tau'_i}$ -closed. Hence by hypothesis, $f^{-1}(S_{\tau'_i}\text{-cl}(\mathbf{B})) \subseteq S_{\tau_{ij}}\text{-bL-cl}(f^{-1}(B)) \subseteq S_{\tau_{ij}}\text{-bL-cl}(\mathbf{C}) \stackrel{^{\prime}}{=} \mathbf{C} \implies f^{-1}(S_{\tau'_i}\text{-bL-cl}(\mathbf{C})) \stackrel{^{\prime}}{=} \mathbf{C}$ $cl(B) \subseteq C.$

Therefore, by Theorem 3.8, then we get f is S_{τ} -p-bL-open mapping.

Supra pairwise b-Locally closed mapping 4

In this section, supra pairwise b-Locally closed mappings are introduced and investigate their properties.

Definition 4.1 Let $(X, S_{\tau_1}, S_{\tau_2})$ and $(Y, S_{\tau'_1}, S_{\tau'_2})$ be two supra bitopological spaces. A function $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ is called supra pairwise bL-closed(briefly, S_{τ} p-bL-closed) mapping if the image of each $S_{\tau_{ij}}$ -bL-closed set in X is $S_{\tau'_i}$ -closed set in Y, where i = 1, 2.

Example 4.2 Let $X = \{a, b, c, d\}, Y = \{p, q, r, s\},$ $S_{\tau_1} = \{\emptyset, X, \{a, d\}, \{b, d\}, \{a, b, d\}\},$ $S_{\tau_2} = \{\emptyset, X, \{a, b\}, \{b, c\}, \{a, b, c\}\},$ $S_{\tau_1'} = \{\emptyset, Y, \{p, q\}, \{p, r\}, \{p, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}\},$ $S_{\tau_2'} = \{\emptyset, Y, \{p\}, \{p, q\}, \{p, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}\}.$ Consider the function $f:(X, S_{\tau_1}, S_{\tau_2}) \rightarrow (Y, S_{\tau_1'}, S_{\tau_2'})$ defined by f(a) = r, f(b) = q, f(c) = r, f(d) = s.Here $S_{\tau_{12}}$ -bL- $C(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}\}$ and image of each $S_{\tau_{12}}$ -bL-C(X) are $S_{\tau_1'}$ -closed. Also $S_{\tau_{21}}$ -bL- $C(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{a, c\}, \{c, d\}, \{a, b, c\}\}$ and image of each $S_{\tau_{21}}$ -bL-C(X) are $S_{\tau_2'}$ -closed. Hence f is S_{τ} -p-bL-closed mapping.

Theorem 4.3 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ be a mapping between two supra bitopological spaces. Then the following are equivalent.

(i) f is S_{τ} -p-bL-closed mapping. (ii) $S_{\tau'_i}$ -cl(f(B)) \subseteq f($S_{\tau_{ij}}$ -bL-cl(B)), for each subset B of X, where i = 1, 2.

Proof: (i) \implies (ii) Let f be S_{τ} -p-bL-closed mapping. Then for any subset B of X. We get $B \subseteq S_{\tau_{ij}}$ -bL-cl(B) and $S_{\tau_{ij}}$ -bL-cl(B) is $S_{\tau_{ij}}$ -bL-closed set in X. Then f(B) \subseteq f($S_{\tau_{ij}}$ -bL-cl(B)). By assumption we obtain f($S_{\tau_{ij}}$ -bL-cl(B)) is $S_{\tau'_i}$ -closed. Therefore $S_{\tau'}$ -cl(f(B)) \subseteq f($S_{\tau_{ij}}$ -bL-cl(B)).

(ii) \implies (i) Let B be a $S_{\tau_{ij}}$ -bL-closed set in X. Then we have $f(B) \subseteq f(S_{\tau_{ij}}$ -bL-cl(B)). By hypothesis, $S_{\tau'_i}$ -cl(f(B)) $\subseteq f(B)$.

Therefore f(B) is $S_{\tau'}$ -closed in Y and hence f is S_{τ} -p-bL-closed mapping.

Theorem 4.4 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ be a mapping. Then the following are equivalent.

(i) f be S_{τ} -p-bL-closed mapping. (ii) For any subset B of Y and for any $S_{\tau_{ij}}$ -bL-open set C in X such that $f^{-1}(B) \subseteq C$, then there exists a $S_{\tau'_i}$ -open set D containing B such that $f^{-1}(D) \subseteq C$, where i = 1, 2.

Proof: The proof is similarly to proof of Theorem 3.8.

Definition 4.5 A function $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ is called supra pairwise bL-closed(briefly, S_{τ} -p-bL-closed) irresolute if $f^{-1}(B) \in S_{\tau_{ij}}$ -bL-C(X) for every $B \in S_{\tau_{i'j'}}$ -bL-C(Y)

Theorem 4.6 Let $f:(X, S_{\tau_1}, S_{\tau_2}) \to (Y, S_{\tau'_1}, S_{\tau'_2})$ and $g:(Y, S_{\tau'_1}, S_{\tau'_2}) \to (Z, S_{\tau''_1}, S_{\tau''_2})$ be two mappings. If $g \circ f: X \to Z$ is S_{τ} -p-bL-closed mapping. If $f S_{\tau}$ -p-bL-closed irresolute surjection, then g is S_{τ} -p-bL-closed mapping.

Proof: Let us assume that, B be $S_{\tau_{ij}}$ -bL-closed set in Y. since f is S_{τ} -p-bL-closed irresolute surjection, then $f^{-1}(B)$ is $S_{\tau_{ij}}$ -bL-closed set in X. Since $g \circ f$ is S_{τ} -p-bL-closed map and f is surjection, then we have $(g \circ f)(f^{-1}(B))$ is $S_{\tau''_i}$ -closed. This implies g(B) is $S_{\tau''_i}$ -closed. Therefore g is S_{τ} -p-bL-closed mapping.

5 Conclusion

The notion of S_{τ} -p-bL-open(closed) functions in supra bitopological space has been introduced. Applying these notions we obtain and investigate many properties to supra bitopological spaces.

References

- [1] D. Andrijevic, On b-open sets, Mat Vesnik, 48, (1996), 59-64.
- [2] R. Gowri and A. K. R. Rajayal, On supra bitopological spaces, IOSR-JM, Vol 13, (2017), 55-58.
- [3] R. Gowri and A. K. R. Rajayal, Supra b-open(closed) sets and supra b-Locally open set in supra bitopological spaces, International Jr. of Research and Analytical Reviews (IJRAR), Vol 5, No 4, (2018), 1054-1059.
- [4] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc.No.(3), 13(1963), 71-89.
- [5] S. Lal, Pairwise concepts in bitopological spaces, Aust.Jr. Math. soc (ser.A), 26(2015),241-250.
- [6] A. S. Mashhour, A.A. Allam, F.S. Mahmoud and F.H. Khedr, On Supra topological spaces, Indian Jr.Pure and Appl.Math.No.4(14)(1983), 502-510.
- [7] C. W. Patty, Bitopological spaces, Pure math. Jr. 34(1967), 387-392.
- [8] N. Rajesh, on b-Locally closed sets in bitopological spaces, Jour.Ind.Acad.Math., 30, (2008) 551-556.
- [9] M. S. Sarsak and N. Rajesh, Special Functions on bitopological spaces, International Mathematical Forum, Vol 4, (2009), 1775-1782.
- [10] O. R. Sayed and T. R. Noiri, on supra b-open sets and supra b-continuity, Eur.Jr.Appl.Matth., 3(2),(2010), 295-302.
- [11] B. C. Tripathy and D. J. Sarma, on pairwise b-Locally open and b-Locally closed functions in bitopological spaces, Tamkang Jr. of Mathematics, Vol 43, (2012), 533-539.